Fr. 130.00

Cartan Geometries and Their Symmetries - A Lie Algebroid Approach

Anglais · Livre Relié

Expédition généralement dans un délai de 6 à 7 semaines

Description

En savoir plus

In this book we first review the ideas of Lie groupoid and Lie algebroid, and the associated concepts of connection. We next consider Lie groupoids of fibre morphisms of a  fibre bundle, and the connections on such groupoids together with their symmetries. We also see how the infinitesimal approach, using Lie algebroids rather than Lie groupoids, and in particular using Lie algebroids of vector fields along the projection of the fibre bundle, may be of benefit.

We then introduce Cartan geometries, together with a number of tools we shall use to study them. We take, as particular examples, the four classical types of geometry: affine, projective, Riemannian and conformal geometry. We also see how our approach can start to fit into a more general theory. Finally, we specialize to the geometries (affine and projective) associated with path spaces and geodesics, and consider their symmetries and other properties.

Table des matières

Lie groupoids and Lie algebroids.- Connections on Lie groupoids and Lie algebroids.-  Groupoids of fibre morphisms.- Four case studies.- Symmetries.- Cartan geometries.- A comparison with alternative approaches.- Infinitesimal Cartan geometries on TM.- Projective geometry: the full version.- Conformal geometry: the full version.- Developments and geodesics.- Cartan theory of second-order di erential equations.    

Résumé

In this book we first review the ideas of Lie groupoid and Lie algebroid, and the associated concepts of connection. We next consider Lie groupoids of fibre morphisms of a  fibre bundle, and the connections on such groupoids together with their symmetries. We also see how the infinitesimal approach, using Lie algebroids rather than Lie groupoids, and in particular using Lie algebroids of vector fields along the projection of the fibre bundle, may be of benefit.

We then introduce Cartan geometries, together with a number of tools we shall use to study them. We take, as particular examples, the four classical types of geometry: affine, projective, Riemannian and conformal geometry. We also see how our approach can start to fit into a more general theory. Finally, we specialize to the geometries (affine and projective) associated with path spaces and geodesics, and consider their symmetries and other properties.

Texte suppl.

“The authors expose an alternative approach to Cartan geometries. … the book offers a nice exposition of the approach to Cartan geometries via Lie algebroids, one also has to say that, apart from the approach, the book remains in quite well-known territory.” (Andreas Cap, Mathematical Reviews, April 2017)

Commentaire

"The authors expose an alternative approach to Cartan geometries. ... the book offers a nice exposition of the approach to Cartan geometries via Lie algebroids, one also has to say that, apart from the approach, the book remains in quite well-known territory." (Andreas Cap, Mathematical Reviews, April 2017)

Détails du produit

Auteurs Mik Crampin, Mike Crampin, David Saunders
Edition Springer, Berlin
 
Langues Anglais
Format d'édition Livre Relié
Sortie 01.01.2016
 
EAN 9789462391918
ISBN 978-94-62-39191-8
Pages 290
Dimensions 163 mm x 242 mm x 23 mm
Poids 567 g
Illustrations XIV, 290 p.
Thèmes Atlantis Press
Atlantis Studies in Variational Geometry
Atlantis Studies in Variational Geometry
Catégories Sciences naturelles, médecine, informatique, technique > Mathématiques > Géométrie

B, Mathematics and Statistics, Differential Geometry

Commentaires des clients

Aucune analyse n'a été rédigée sur cet article pour le moment. Sois le premier à donner ton avis et aide les autres utilisateurs à prendre leur décision d'achat.

Écris un commentaire

Super ou nul ? Donne ton propre avis.

Pour les messages à CeDe.ch, veuillez utiliser le formulaire de contact.

Il faut impérativement remplir les champs de saisie marqués d'une *.

En soumettant ce formulaire, tu acceptes notre déclaration de protection des données.