Fr. 117.00

Normally Hyperbolic Invariant Manifolds - The Noncompact Case

Anglais · Livre de poche

Expédition généralement dans un délai de 6 à 7 semaines

Description

En savoir plus

This monograph treats normally hyperbolic invariant manifolds, with a focus on noncompactness. These objects generalize hyperbolic fixed points and are ubiquitous in dynamical systems.
First, normally hyperbolic invariant manifolds and their relation to hyperbolic fixed points and center manifolds, as well as, overviews of history and methods of proofs are presented. Furthermore, issues (such as uniformity and bounded geometry) arising due to noncompactness are discussed in great detail with examples.
The main new result shown is a proof of persistence for noncompact normally hyperbolic invariant manifolds in Riemannian manifolds of bounded geometry. This extends well-known results by Fenichel and Hirsch, Pugh and Shub, and is complementary to noncompactness results in Banach spaces by Bates, Lu and Zeng. Along the way, some new results in bounded geometry are obtained and a framework is developed to analyze ODEs in a differential geometric context.
Finally, the main result is extended to time and parameter dependent systems and overflowing invariant manifolds.

Table des matières

Introduction.- Manifolds of bounded geometry.- Persistence of noncompact NHIMs.- Extension of results.

Détails du produit

Auteurs Jaap Eldering
Edition Springer, Berlin
 
Langues Anglais
Format d'édition Livre de poche
Sortie 31.10.2015
 
EAN 9789462390423
ISBN 978-94-62-39042-3
Pages 189
Dimensions 155 mm x 11 mm x 235 mm
Poids 320 g
Illustrations XII, 189 p.
Thèmes Atlantis Studies in Dynamical Systems
Atlantis Studies in Dynamical Systems
Catégories Sciences naturelles, médecine, informatique, technique > Mathématiques > Analyse

B, Mathematics, Dynamics, Mathematics and Statistics, Mathematics, general, Dynamical Systems and Ergodic Theory, Ergodic theory, Dynamical systems

Commentaires des clients

Aucune analyse n'a été rédigée sur cet article pour le moment. Sois le premier à donner ton avis et aide les autres utilisateurs à prendre leur décision d'achat.

Écris un commentaire

Super ou nul ? Donne ton propre avis.

Pour les messages à CeDe.ch, veuillez utiliser le formulaire de contact.

Il faut impérativement remplir les champs de saisie marqués d'une *.

En soumettant ce formulaire, tu acceptes notre déclaration de protection des données.