Fr. 190.00

Field Effect Transistors, a Comprehensive Overview - From Basic Concepts to Novel Technologies

Anglais · Livre Relié

Expédition généralement dans un délai de 1 à 3 semaines (ne peut pas être livré de suite)

Description

En savoir plus

Informationen zum Autor Pouya Valizadeh is Associate Professor in the Department of Electrical and Computer Engineering at Concordia University in Quebec, Canada. He received B.S. and M.S. degrees with honors from the University of Tehran and Ph.D. degree from The University of Michigan (Ann Arbor) all in Electrical Engineering in 1997, 1999, and 2005, respectively. Over the past decade, Dr. Valizadeh has taught numerous sections of five different courses covering topics such as semiconductor process technology, semiconductor materials and their properties, advanced solid state devices, transistor design for modern CMOS technology, and high speed transistors. Klappentext This book discusses modern-day Metal Oxide Semiconductor Field Effect Transistors (MOSFETs) and future trends of transistor devices.This book provides an overview of Field Effect Transistors (FETs) by discussing the basic principles of FETs and exploring the latest technological developments in the field. It covers and connects a wide spectrum of topics related to semiconductor device physics, physics of transistors, and advanced transistor concepts. This book contains six chapters. Chapter 1 discusses electronic materials and charge. Chapter 2 examines junctions, discusses contacts under thermal-equilibrium, metal-semiconductor contacts, and metal-insulator-semiconductor systems. Chapter 3 covers traditional planar Metal Oxide Semiconductor Field Effect Transistors (MOSFETs). Chapter 4 describes scaling-driving technological variations and novel dimensions of MOSFETs. Chapter 5 analyzes Heterojunction Field Effect Transistors (FETs) and also discusses the challenges and rewards of heteroepitaxy. Finally, Chapter 6 examines FETs at molecular scales.* Links the discussion of contemporary transistor devices to physical processes* Material has been class-tested in undergraduate and graduate courses on the design of integrated circuit components taught by the author* Contains examples and end-of-chapter problemsField Effect Transistors, A Comprehensive Overview: From Basic Concepts to Novel Technologies is a reference for senior undergraduate / graduate students and professional engineers needing insight into physics of operation of modern FETs.Pouya Valizadeh is Associate Professor in the Department of Electrical and Computer Engineering at Concordia University in Quebec, Canada. He received B.S. and M.S. degrees with honors from the University of Tehran and Ph.D. degree from The University of Michigan (Ann Arbor) all in Electrical Engineering in 1997, 1999, and 2005, respectively. Over the past decade, Dr. Valizadeh has taught numerous sections of five different courses covering topics such as semiconductor process technology, semiconductor materials and their properties, advanced solid state devices, transistor design for modern CMOS technology, and high speed transistors. Zusammenfassung This book discusses modern-day Metal Oxide Semiconductor Field Effect Transistors (MOSFETs) and future trends of transistor devices. This book provides an overview of Field Effect Transistors (FETs) by discussing the basic principles of FETs and exploring the latest technological developments in the field. Inhaltsverzeichnis Introduction xi1 Electronic Materials and Charge Transport 11.1 Wave/Particle Electrons in Solids 11.1.1 Quantum Description of Electrons 31.1.2 Band Diagram and Effective-Mass Formalism 61.1.3 Density of States Function 71.1.4 Conduction and Valence Bands 81.1.5 Band Diagram and Free Charge Carriers 101.1.6 Supplementary Notes on Band Diagram 111.1.7 Bond Model 141.2 Electrons, Holes, and Doping in Semiconductors 141.2.1 Electrons and Holes 141.2.2 Doping 181.2.3 Calculation of Ionization Energies in Semiconductors 241.3 Thermal-Equilibrium Statistics 251.3.1 Fermi-Dirac Statistics 251.3.2 Maxwell-Boltzmann Statistics 271.3.3 Calculating Electron and Hole Concent...

Table des matières

Introduction xi
 
1 Electronic Materials and Charge Transport 1
 
1.1 Wave/Particle Electrons in Solids 1
 
1.1.1 Quantum Description of Electrons 3
 
1.1.2 Band Diagram and Effective-Mass Formalism 6
 
1.1.3 Density of States Function 7
 
1.1.4 Conduction and Valence Bands 8
 
1.1.5 Band Diagram and Free Charge Carriers 10
 
1.1.6 Supplementary Notes on Band Diagram 11
 
1.1.7 Bond Model 14
 
1.2 Electrons, Holes, and Doping in Semiconductors 14
 
1.2.1 Electrons and Holes 14
 
1.2.2 Doping 18
 
1.2.3 Calculation of Ionization Energies in Semiconductors 24
 
1.3 Thermal-Equilibrium Statistics 25
 
1.3.1 Fermi-Dirac Statistics 25
 
1.3.2 Maxwell-Boltzmann Statistics 27
 
1.3.3 Calculating Electron and Hole Concentration in Nondegenerate Semiconductors 29
 
1.3.4 Mass Action Law 31
 
1.3.5 Calculation of Electron and Hole Concentration in a Degenerate Semiconductor 33
 
1.3.6 Quasi-Fermi Levels 35
 
1.3.7 Statistics of Dopant Activation Process 35
 
1.4 Charge-Carrier Transport in Semiconductors 37
 
1.4.1 Current-Continuity Equation 39
 
1.4.2 Drift-Diffusion Formalism 40
 
1.4.3 Characterization of Low Electric-Field Transport Parameters 53
 
1.4.4 High Electric-Field Drift Transport 54
 
1.4.5 Thermionic and Field Emission 61
 
1.5 Breakdown in Semiconductors 66
 
1.6 Crystallinity and Semiconductor Materials 69
 
1.6.1 Bravais Lattices 71
 
1.6.2 Strain and Techniques of Epitaxy 78
 
1.7 Quantum Transport Phenomena and Scattering Mechanisms in Semiconductors 89
 
1.7.1 Quantum Phenomena in Carrier Transport: A Snapshot 90
 
1.7.2 Drude's Model: A Close-UP 91
 
1.7.3 Major Scattering Processes 95
 
Further Reading 109
 
Solid-State Theory 109
 
Physics of Semiconductor Devices 109
 
Semiconductor Materials and Heterostructures 109
 
Problems 110
 
Appendix 1.A Derivation of Fermi-Dirac Statistics 111
 
Further Reading 114
 
Appendix 1.B Derivation of Einstein Relationship in Degenerate Semiconductors 114
 
Further Reading 115
 
Appendix 1.C Strain Tensor 116
 
2 Junctions 119
 
2.1 Contacts Under Thermal Equilibrium 119
 
2.2 Metal-Semiconductor Contacts 121
 
2.2.1 Band Diagram of an MS Junction 122
 
2.2.2 SDA 127
 
2.3 P-N Junctions 149
 
2.3.1 Thermal-Equilibrium Band Diagram of P-N Junctions 149
 
2.3.2 Calculation of Potential across P-N Junctions and SDA 151
 
2.4 Metal-Insulator-Semiconductor System 188
 
2.4.1 Thermal-Equilibrium Band Diagram of MOS System 189
 
2.4.2 Biased MOS System 192
 
2.4.3 Threshold-Voltage Adjustment and Calculations 200
 
2.4.4 C-V Characteristic of MOS Systems 208
 
2.5 Current Conduction in the Presence of Band Discontinuities in Junctions 216
 
2.5.1 Thermionic Emission 216
 
2.5.2 Field Emission and Thermionic-Field Emission 224
 
Further Reading 227
 
Physics of Semiconductor Devices 227
 
Problems 228
 
Appendix 2.A Limitations of SDA and the Meaning of Debye Length 229
 
3 Traditional Planar MOSFETs: Operation, Modeling, and Technology Scaling 231
 
3.1 Battle of Transistors: MOSFET Versus BJT 232
 
3.2 Principles of Operation of MOSFETs and Device Modeling: First-Order Principles 236
 
3.2.1 Modeling of the Operation of Long-Channel MOSFET 238
 
3.2.2 Modeling of the Operation of Short-Channel MOSFET 250
 
3.3 Quant

Commentaires des clients

Aucune analyse n'a été rédigée sur cet article pour le moment. Sois le premier à donner ton avis et aide les autres utilisateurs à prendre leur décision d'achat.

Écris un commentaire

Super ou nul ? Donne ton propre avis.

Pour les messages à CeDe.ch, veuillez utiliser le formulaire de contact.

Il faut impérativement remplir les champs de saisie marqués d'une *.

En soumettant ce formulaire, tu acceptes notre déclaration de protection des données.