Fr. 189.00

SAT 2005 - Satisfiability Research in the Year 2005

Anglais · Livre de poche

Expédition généralement dans un délai de 6 à 7 semaines

Description

En savoir plus

This book is devoted to recent progress made in solving propositional satisfiability and related problems. Propositional satisfiability is a powerful and general formalism used to solve a wide range of important problems including hardware and software verification. The core of many reasoning problems in automated deduction are propositional. Research into methods to automate such reasoning has therefore a long history in artificial intelligence. In 1957, Allen Newell and Herb Simon introduced the Logic Theory Machine to prove propositional theorems from Whitehead and Russel's "Principia mathematica".
In 1960, Martin Davis and Hillary Putnam introduced their eponymous decision procedure for satisfiability reasoning (though, for space reasons, it was quickly superseded by the modified procedure proposed by Martin Davis, George Logemann and Donald Loveland two years later). In 1971, Stephen Cook's proof that propositional satisfiability is NP-Complete placed satisfiability as the cornerstone of complexity theory.

Table des matières

Satisfiability in the Year 2005.- Heuristic-Based Backtracking Relaxation for Propositional Satisfiability.- Symbolic Techniques in Satisfiability Solving.- Exponential Lower Bounds for the Running Time of DPLL Algorithms on Satisfiable Formulas.- Backdoor Sets for DLL Subsolvers.- The Complexity of Pure Literal Elimination.- Clause Weighting Local Search for SAT.- Solving Non-Boolean Satisfiability Problems with Stochastic Local Search: A Comparison of Encodings.- Regular Random k-SAT: Properties of Balanced Formulas.- Applying SAT Solving in Classification of Finite Algebras.- The SAT-based Approach to Separation Logic.- MathSAT: Tight Integration of SAT and Mathematical Decision Procedures.

Résumé

This book is devoted to recent progress made in solving propositional satisfiability and related problems. Propositional satisfiability is a powerful and general formalism used to solve a wide range of important problems including hardware and software verification. The core of many reasoning problems in automated deduction are propositional. Research into methods to automate such reasoning has therefore a long history in artificial intelligence. In 1957, Allen Newell and Herb Simon introduced the Logic Theory Machine to prove propositional theorems from Whitehead and Russel's "Principia mathematica".
In 1960, Martin Davis and Hillary Putnam introduced their eponymous decision procedure for satisfiability reasoning (though, for space reasons, it was quickly superseded by the modified procedure proposed by Martin Davis, George Logemann and Donald Loveland two years later). In 1971, Stephen Cook's proof that propositional satisfiability is NP-Complete placed satisfiability as the cornerstone of complexity theory.

Détails du produit

Collaboration Enric Giunchiglia (Editeur), Enrico Giunchiglia (Editeur), Walsh (Editeur), Walsh (Editeur), Toby Walsh (Editeur)
Edition Springer Netherlands
 
Langues Anglais
Format d'édition Livre de poche
Sortie 01.01.2014
 
EAN 9789400787155
ISBN 978-94-0-078715-5
Pages 293
Dimensions 155 mm x 235 mm x 16 mm
Poids 462 g
Illustrations VII, 293 p.
Catégories Sciences naturelles, médecine, informatique, technique > Informatique, ordinateurs > Informatique

C, Künstliche Intelligenz, Software Engineering, Artificial Intelligence, Logic, Theoretische Informatik, computer science, Verification, intelligence, Theory of Computation, Software Engineering/Programming and Operating Systems, Operating systems, Computers, Mathematical theory of computation, software verification

Commentaires des clients

Aucune analyse n'a été rédigée sur cet article pour le moment. Sois le premier à donner ton avis et aide les autres utilisateurs à prendre leur décision d'achat.

Écris un commentaire

Super ou nul ? Donne ton propre avis.

Pour les messages à CeDe.ch, veuillez utiliser le formulaire de contact.

Il faut impérativement remplir les champs de saisie marqués d'une *.

En soumettant ce formulaire, tu acceptes notre déclaration de protection des données.