Fr. 117.00

Ramanujan's Lost Notebook - Part III

Anglais · Livre de poche

Expédition généralement dans un délai de 6 à 7 semaines

Description

En savoir plus

In the spring of 1976, George Andrews of Pennsylvania State University visited the library at Trinity College, Cambridge to examine the papers of the late G.N. Watson. Among these papers, Andrews discovered a sheaf of 138 pages in the handwriting of Srinivasa Ramanujan. This manuscript was soon designated, "Ramanujan's lost notebook." Its discovery has frequently been deemed the mathematical equivalent of finding Beethoven's tenth symphony.

This volume is the third of five volumes that the authors plan to write on Ramanujan's lost notebook and other manuscripts and fragments found in The Lost Notebook and Other Unpublished Papers, published by Narosa in 1988. The ordinary partition function p(n) is the focus of this third volume. In particular, ranks, cranks, and congruences for p(n) are in the spotlight. Other topics include the Ramanujan tau-function, the Rogers-Ramanujan functions, highly composite numbers, and sums of powers of theta functions.

Reviewfrom the second volume:

"Fans of Ramanujan's mathematics are sure to be delighted by this book. While some of the content is taken directly from published papers, most chapters contain new material and some previously published proofs have been improved. Many entries are just begging for further study and will undoubtedly be inspiring research for decades to come. The next installment in this series is eagerly awaited."
- MathSciNet

Review from the first volume:

"Andrews a
nd Berndt are to be congratulated on the job they are doing. This is the first step...on the way to an understanding of the work of the genius Ramanujan. It should act as an inspiration to future generations of mathematicians to tackle a job that will never be complete."
- Gazette of the Australian Mathematical Society

Table des matières

Preface.- Introduction.- 1. Ranks and Cranks, Part I.- 2. Ranks and Cranks, Part II.- 3. Ranks and Cranks, Part III.- 4. Ramanujan's Unpublished Manuscript on the Partition and Tau Functions.- 5. Theorems about the Partition Function on Pages 189 and 182.- 6. Congruences for Generalized Tau Functions on Page 178.- 7. Ramanujan's Forty Identities for the Rogers-Ramanujan Functions.- 8. Circular Summation.- 9. Highly Composite Numbers.- Scratch Work.- Location Guide.- Provenance.- References.

A propos de l'auteur

George E. Andrews is currently a professor of mathematics at Pennsylvania State University. Bruce C. Berndt is currently a professor of mathematics at the University of Illinois.

Résumé

Its discovery has frequently been deemed the mathematical equivalent of finding Beethoven's tenth symphony. This volume is the third of five volumes that the authors plan to write on Ramanujan’s lost notebook and other manuscripts and fragments found in The Lost Notebook and Other Unpublished Papers, published by Narosa in 1988.

Commentaire

"This is the third volume in a series devoted to Ramanujan's lost notebook and related manuscripts. ... The number theory community has to thank the authors for their excellent and devoted work." (C. Baxa, Monatshefte Mathematik, 2015)

Détails du produit

Auteurs George Andrews, George E Andrews, George E. Andrews, Bruce C Berndt, Bruce C. Berndt
Edition Springer, Berlin
 
Langues Anglais
Format d'édition Livre de poche
Sortie 01.01.2014
 
EAN 9781489994974
ISBN 978-1-4899-9497-4
Pages 436
Dimensions 173 mm x 27 mm x 235 mm
Poids 674 g
Illustrations XII, 436 p.
Catégories Sciences naturelles, médecine, informatique, technique > Mathématiques > Arithmétique, algèbre

C, Mathematics and Statistics, Number Theory

Commentaires des clients

Aucune analyse n'a été rédigée sur cet article pour le moment. Sois le premier à donner ton avis et aide les autres utilisateurs à prendre leur décision d'achat.

Écris un commentaire

Super ou nul ? Donne ton propre avis.

Pour les messages à CeDe.ch, veuillez utiliser le formulaire de contact.

Il faut impérativement remplir les champs de saisie marqués d'une *.

En soumettant ce formulaire, tu acceptes notre déclaration de protection des données.