Fr. 65.00

Differenzenapproximationen partieller Anfangswertaufgaben

Allemand · Livre de poche

Expédition généralement dans un délai de 1 à 2 semaines (titre imprimé sur commande)

Description

En savoir plus

1956 veröffentlichten Lax und Richtmyer [6~ eine Arbeit, in der unter Benutzung funktionalanalytischer Hilfsmittel die Struktur des Konvergenzverhaltens von Differenzapproximationen für eine große Klasse linearer Anfangswertaufgaben bei partiellen Differential gleichungen aufgeklärt werden konnte. Insbesondere konnte der Satz über die Äquivalenz der numerischen Stabilität mit der punktweisen Konvergenz eines mit der gegebenen Anfangswertaufgabe konsistenten Differenzenverfahrens weitestgehend unabhängig von dem der Aufga benstellung zugrundeliegenden normierten Raum und unabhängig vom Typ der approximierten Aufgabe formuliert werden. Zugleich ergab sich, daß unter gewissen Voraussetzungen neben den klassischen Lö sungen der gegebenen Anfangswertaufgabe auch deren verallgemeiner te Lösungen durch das Differenzenverfahren approximierbar sind, wenngleich Fehlerabschätzungen oder auch nur Angaben über die Kon vergenzordnung im Falle verallgemeinerter Lösungen zunächst aus blieben. In den seither vergangenen zwei Jahrzehnten wurden mit Erfolg zahl reiche Versuche unternommen, diese Lax-Richtmyer-Theorie in ver schiedenen Richtungen zu ergänzen und zu verallgemeinern. Dabei zeigte sich insbesondere, daß die punktweise Konvergenz der ite rierten Differenzenoperatoren bei der Approximation nichtlinearer Differentialgleichungen in der Regel nicht ausreicht, um die nume rische Brauchbarkeit eines Verfahrens zu gewährleisten, jedoch ge lang es, auch bei entsprechend verfeinerten Konvergenzbegriffen un ter Verwendung geeigneter Stabilitätsdefinitionen Äquivalenzsätze aufzustellen und damit die Lax-Richtmyer-Theorie einschließlich der aus ihr für konkrete Probleme in den Anwendungsgebieten resultie renden Forderungen auf solche nichtlinearen Probleme zu erweitern. Naturgemäß spielte dabei die Frage der Existenz und der numerischen Erfaßbarkeit verallgemeinerter Lösungen nichtlinearer Probleme ei ne nicht unerhebliche Rolle.

Table des matières

1 Das kontinuierliche Problem.- 1.1 Funktionalanalytische Formulierung von Anfangswertaufgaben.- 1.2 Der Begriff der verallgemeinerten Lösung.- 2 Differenzenverfahren.- 2.1 Konstruktion von Dif Pds. erenzapproximationen.- 2.2 Formulierung von Mehrschrittverfahren als Einschrittverfahren auf Produkträumen.- 2.3 Lokaler Fehler und Konsistenz.- 3 Konvergenzbegriffe bei Differenzenverfahren.- 3.1 Begründung für die Entwicklung verschiedenartiger Konvergenzbegriffe.- 3.2 Der Satz von Rinow; Existenz verallgemeinerter Lösungen.- 4 Lineare Anfangswertaufgaben.- 4.1 Gleichgradige Stetigkeit, gleichmäßige Beschränktheit, Stabilität.- 4.2 Äquivalenzsätze.- 4.3 Beispiele.- 4.4 Differentialgleichungen mit konstanten Koeffizienten im L2.- 4.5 Konvergenzordnungen bei linearen Anfangswertaufgaben mit schwach strukturierten Anfangswerten.- 5 Halblineare Anfangswertaufgaben.- 5.1 Äquivalenzsätze.- 5.2 Spezialisierung auf den Fall gewöhnlicher nichtlinearer Differentialgleichungen.- 5.3 Konvergenz im Falle verallgemeinerter Lösungen.- 5.4 Konvergenzordnungen bei schwach strukturierten Anfangsdaten halblinearer Anfangswertaufgaben.- 6 Quasilineare Anfangswertaufgaben.- 6.1 Hinreichende Konvergenzbedingungen.- 6.2 Ein Äquivalenzsatz.- 6.3 Existenz verallgemeinerter Lösungen.- 7 Nichtlineare Anfangswertaufgaben.- 7.1 Hinreichende Konvergenzbedingungen.- 7.2 Notwendige und hinreichende Konvergenzbedingungen bei differenzierbaren Verfahren.- 8 Nichtzylindrische Probleme.- Verzeichnis einiger häufig benutzter Symbole.

A propos de l'auteur

Prof. Rainer Ansorge, geb. 1931 in Berlin, studierte Mathematik und Physik an der FU und der TU in Berlin. Nach Promotion und Habilitation an der TU Clausthal erfolgte 1969 der Ruf als C4-Professor an die Universität Hamburg. Er ist unter anderem Mitglied der 'Europäische Akademie der Wissenschaften und Künste' (Wien), der New Yorker Akademie der Wissenschaften sowie der Gesellschaft für Angewandte Mathematik und Mechanik.

Détails du produit

Auteurs Rainer Ansorge
Edition Vieweg+Teubner
 
Langues Allemand
Format d'édition Livre de poche
Sortie 26.05.2014
 
EAN 9783519023470
ISBN 978-3-519-02347-0
Pages 302
Dimensions 142 mm x 217 mm x 19 mm
Poids 394 g
Illustrations 302 S.
Thèmes Leitfäden der angewandten Mathematik und Mechanik - Teubner Studienbücher
Leitfäden der angewandten Mathematik und Mechanik
Leitfäden der angewandten Mathematik und Mechanik
Leitfäden der angewandten Mathematik und Mechanik - Teubner Studienbücher
Catégorie Sciences naturelles, médecine, informatique, technique > Technique > Autres

Commentaires des clients

Aucune analyse n'a été rédigée sur cet article pour le moment. Sois le premier à donner ton avis et aide les autres utilisateurs à prendre leur décision d'achat.

Écris un commentaire

Super ou nul ? Donne ton propre avis.

Pour les messages à CeDe.ch, veuillez utiliser le formulaire de contact.

Il faut impérativement remplir les champs de saisie marqués d'une *.

En soumettant ce formulaire, tu acceptes notre déclaration de protection des données.