Fr. 136.90

Non-Abelian Fundamental Groups and Iwasawa Theory

Anglais · Livre de poche

Expédition généralement dans un délai de 1 à 3 semaines (ne peut pas être livré de suite)

Description

En savoir plus

Klappentext Number theory currently has at least three different perspectives on non-abelian phenomena: the Langlands programme, non-commutative Iwasawa theory and anabelian geometry. In the second half of 2009, experts from each of these three areas gathered at the Isaac Newton Institute in Cambridge to explain the latest advances in their research and to investigate possible avenues of future investigation and collaboration. For those in attendance, the overwhelming impression was that number theory is going through a tumultuous period of theory-building and experimentation analogous to the late 19th century, when many different special reciprocity laws of abelian class field theory were formulated before knowledge of the Artin-Takagi theory. Non-abelian Fundamental Groups and Iwasawa Theory presents the state of the art in theorems, conjectures and speculations that point the way towards a new synthesis, an as-yet-undiscovered unified theory of non-abelian arithmetic geometry. Zusammenfassung This book describes the interaction between several key aspects of Galois theory based on Iwasawa theory! fundamental groups and automorphic forms. These ideas encompass a large portion of mainstream number theory and ramifications that are of interest to graduate students and researchers in number theory! algebraic geometry! topology and physics. Inhaltsverzeichnis List of contributors; Preface; 1. Lectures on anabelian phenomena in geometry and arithmetic Florian Pop; 2. On Galois rigidity of fundamental groups of algebraic curves Hiroaki Nakamura; 3. Around the Grothendieck anabelian section conjecture Mohamed Saïdi; 4. From the classical to the noncommutative Iwasawa theory (for totally real number fields) Mahesh Kakde; 5. On the ¿H(G)-conjecture J. Coates and R. Sujatha; 6. Galois theory and Diophantine geometry Minhyong Kim; 7. Potential modularity - a survey Kevin Buzzard; 8. Remarks on some locally Qp-analytic representations of GL2(F) in the crystalline case Christophe Breuil; 9. Completed cohomology - a survey Frank Calegari and Matthew Emerton; 10. Tensor and homotopy criteria for functional equations of l-adic and classical iterated integrals Hiroaki Nakamura and Zdzis¿aw Wojtkowiak....

Commentaires des clients

Aucune analyse n'a été rédigée sur cet article pour le moment. Sois le premier à donner ton avis et aide les autres utilisateurs à prendre leur décision d'achat.

Écris un commentaire

Super ou nul ? Donne ton propre avis.

Pour les messages à CeDe.ch, veuillez utiliser le formulaire de contact.

Il faut impérativement remplir les champs de saisie marqués d'une *.

En soumettant ce formulaire, tu acceptes notre déclaration de protection des données.