Fr. 146.00

Ergodic Theory

Anglais · Livre de poche

Expédition généralement dans un délai de 1 à 2 semaines (titre imprimé sur commande)

Description

En savoir plus

Ergodic theory is one of the few branches of mathematics which has changed radically during the last two decades. Before this period, with a small number of exceptions, ergodic theory dealt primarily with averaging problems and general qualitative questions, while now it is a powerful amalgam of methods used for the analysis of statistical properties of dyna mical systems. For this reason, the problems of ergodic theory now interest not only the mathematician, but also the research worker in physics, biology, chemistry, etc. The outline of this book became clear to us nearly ten years ago but, for various reasons, its writing demanded a long period of time. The main principle, which we adhered to from the beginning, was to develop the approaches and methods or ergodic theory in the study of numerous concrete examples. Because of this, Part I of the book contains the description of various classes of dynamical systems, and their elementary analysis on the basis of the fundamental notions of ergodicity, mixing, and spectra of dynamical systems. Here, as in many other cases, the adjective" elementary" i~ not synonymous with "simple. " Part II is devoted to "abstract ergodic theory. " It includes the construc tion of direct and skew products of dynamical systems, the Rohlin-Halmos lemma, and the theory of special representations of dynamical systems with continuous time. A considerable part deals with entropy.

Table des matières

I Ergodicity and Mixing. Examples of Dynamic Systems.- 1 Basic Definitions of Ergodic Theory.- 2 Smooth Dynamical Systems on Smooth Manifolds.- 3 Smooth Dynamical Systems on the Torus.- 4 Dynamical Systems of Algebraic Origin.- 5 Interval Exchange Transformations.- 6 Billiards.- 7 Dynamical Systems in Number Theory.- 8 Dynamical Systems in Probability Theory.- 9 Examples of Infinite Dimensional Dynamical Systems.- II Basic Constructions of Ergodic Theory.- 10 Simplest General Constructions and Elements of Entropy Theory of Dynamical Systems.- 11 Special Representations of Flows.- III Spectral Theory of Dynamical Systems.- 12 Dynamical Systems with Pure Point Spectrum.- 13 Examples of Spectral Analysis of Dynamical Systems.- 14 Spectral Analysis of Gauss Dynamical Systems.- IV Approximation Theory of Dynamical Systems by Periodic Dynamical Systems and Some of its Applications.- 15 Approximations of Dynamical Systems.- 16 Special Representations and Approximations of Smooth Dynamical Systems on the Two-dimensional Torus.- Appendix 1.- Lebesgue Spaces and Measurable Partitions.- Appendix 2.- Relevant Facts from the Spectral Theory of Unitary Operators.- Appendix 3.- Proof of the Birkhoff-Khinchin Theorem.- Appendix 4.- Kronecker Sets.- Bibliographical Notes.

Détails du produit

Auteurs I Cornfeld, I P Cornfeld, I. P. Cornfeld, S Fomin, S V Fomin, S. V. Fomin, Y G Sinai, Y. G. Sinai, Ya. G. Sinai
Collaboration A. B. Sossinskii (Traduction)
Edition Springer, Berlin
 
Langues Anglais
Format d'édition Livre de poche
Sortie 23.04.2014
 
EAN 9781461569299
ISBN 978-1-4615-6929-9
Pages 486
Dimensions 156 mm x 233 mm x 28 mm
Poids 759 g
Illustrations X, 486 p.
Thèmes Grundlehren der mathematischen Wissenschaften
Grundlehren der mathematischen Wissenschaften
Catégorie Sciences naturelles, médecine, informatique, technique > Mathématiques > Théorie des probabilités, stochastique, statistiques

Commentaires des clients

Aucune analyse n'a été rédigée sur cet article pour le moment. Sois le premier à donner ton avis et aide les autres utilisateurs à prendre leur décision d'achat.

Écris un commentaire

Super ou nul ? Donne ton propre avis.

Pour les messages à CeDe.ch, veuillez utiliser le formulaire de contact.

Il faut impérativement remplir les champs de saisie marqués d'une *.

En soumettant ce formulaire, tu acceptes notre déclaration de protection des données.