Fr. 53.50

Analytische Funktionen in der Zahlentheorie

Allemand · Livre de poche

Expédition généralement dans un délai de 6 à 7 semaines

Description

En savoir plus

Im Mittelpunkt des Buches steht die Behandlung von Funktionalgleichungen analytischer Funktionen, die für die Anwendungen in der Zahlentheorie von Interesse sind. Ausgehend vom Gedankenkreis des quadratischen Reziprozitätsgesetzes werden die analytischen Grundlagen durch die Jacobischen Thetafunktionen und die Dedekindsche Etafunktion gelegt und ihre Beziehungen zu den Gaußschen und Dedekindschen Summen erörtert. Anschließend werden Verallgemeinerungen dieser Funktionen bezüglich höherer arithmetischer Probleme besprochen. Schließlich werden analytische Funktionen über konvexen Körpern betrachtet und Abschätzungen von Gitterpunktanzahlen in konvexen Körpern vorgenommen.

Table des matières

1 Exponentialsummen I.- 1.1 Die Kusmin-Landausche Ungleichung.- 1.2 Der Satz von van der Corput.- 1.3 Die Fehlerfunktion.- 1.4 Anmerkungen.- 2 Reziprozitätsgesetze.- 2.1 Gaußsche Summen.- 2.2 Exponentialsummen mit quadratischem Polynom.- 2.3 Die Jacobische Thetafunktion.- 2.4 Funktionalgleichungen analytischer Funktionen.- 2.5 Grenzfälle der Thetafunktionen.- 2.6 Die Dedekindsche Etafunktion.- 2.7 Dedekindsche Summen.- 2.8 Anmerkungen.- 3 Höhere Eta- und Thetafunktionen.- 3.1 Höhere Etafunktionen.- 3.2 Höhere Dedekindsche Summen.- 3.3 Partitionen.- 3.4 Höhere Thetafunktionen.- 3.5 Höhere Gaußsche Summen.- 3.6 Grenzfälle der höheren Thetafunktionen.- 3.7 Weylsche Exponentialsummen.- 3.8 Anmerkungen.- 4 Exponentialsummen II.- 4.1 Zweifache Exponentialsummen I.- 4.2 Zweifache Exponentialsummen II.- 4.3 Zweifache Exponentialsummen III.- 4.4 Anmerkungen.- 5 Konvexe Körper.- 5.1 Geometrische Grundlagen.- 5.2 Analytische Funktionen der konvexen Körper.- 5.3 Gitterpunkte.- 6 Literaturverzeichnis.- 7 Index.

A propos de l'auteur

Professor Dr. Ekkehard Krätzel, Universität Wien

Résumé

Im Mittelpunkt des Buches steht die Behandlung von Funktionalgleichungen analytischer Funktionen, die für die Anwendungen in der Zahlentheorie von Interesse sind. Ausgehend vom Gedankenkreis des quadratischen Reziprozitätsgesetzes werden die analytischen Grundlagen durch die Jacobischen Thetafunktionen und die Dedekindsche Etafunktion gelegt und ihre Beziehungen zu den Gaußschen und Dedekindschen Summen erörtert. Anschließend werden Verallgemeinerungen dieser Funktionen bezüglich höherer arithmetischer Probleme besprochen. Schließlich werden analytische Funktionen über konvexen Körpern betrachtet und Abschätzungen von Gitterpunktanzahlen in konvexen Körpern vorgenommen.

Préface

Neueste Forschungsergebnisse zur Zahlentheorie

Détails du produit

Auteurs Ekkehard Krätzel, Ekkehard (Prof. Dr.) Krätzel
Edition Vieweg+Teubner
 
Langues Allemand
Format d'édition Livre de poche
Sortie 01.01.2000
 
EAN 9783519002895
ISBN 978-3-519-00289-5
Pages 288
Poids 460 g
Illustrations 288 S. 1 Abb.
Thèmes Teubner-Texte zur Mathematik
Teubner-Texte zur Mathematik
Catégories Sciences naturelles, médecine, informatique, technique > Mathématiques > Arithmétique, algèbre

Zahlentheorie, Algebra, A, Mathematics and Statistics, Number Theory, Reziprozitätsgesetze

Commentaires des clients

Aucune analyse n'a été rédigée sur cet article pour le moment. Sois le premier à donner ton avis et aide les autres utilisateurs à prendre leur décision d'achat.

Écris un commentaire

Super ou nul ? Donne ton propre avis.

Pour les messages à CeDe.ch, veuillez utiliser le formulaire de contact.

Il faut impérativement remplir les champs de saisie marqués d'une *.

En soumettant ce formulaire, tu acceptes notre déclaration de protection des données.