épuisé

Deduction Systems

Anglais · Livre Relié

Description

En savoir plus

The idea of mechanizing deductive reasoning can be traced all the way back to Leibniz, who proposed the development of a rational calculus for this purpose. But it was not until the appearance of Frege's 1879 Begriffsschrift-"not only the direct ancestor of contemporary systems of mathematical logic, but also the ancestor of all formal languages, including computer programming languages" ([Dav83])-that the fundamental concepts of modern mathematical logic were developed. Whitehead and Russell showed in their Principia Mathematica that the entirety of classical mathematics can be developed within the framework of a formal calculus, and in 1930, Skolem, Herbrand, and Godel demonstrated that the first-order predicate calculus (which is such a calculus) is complete, i. e. , that every valid formula in the language of the predicate calculus is derivable from its axioms. Skolem, Herbrand, and GOdel further proved that in order to mechanize reasoning within the predicate calculus, it suffices to Herbrand consider only interpretations of formulae over their associated universes. We will see that the upshot of this discovery is that the validity of a formula in the predicate calculus can be deduced from the structure of its constituents, so that a machine might perform the logical inferences required to determine its validity. With the advent of computers in the 1950s there developed an interest in automatic theorem proving.

Table des matières

1 Introduction.- 2 Mathematical Preliminaries.- 2.1 Sets and Relations.- 2.2 Functions and Countability.- 2.3 Posets and Zorn's Lemma.- 2.4 Trees.- 2.5 Mathematical Induction.- 3 Syntax of First-order Languages.- 3.1 First-order Languages.- 3.2 Induction over Terms and Formulae.- 3.3 Free and Bound Variables.- 3.4 Substitutions.- 4 Semantics of First-order Languages.- 4.1 Structures and Interpretations.- 4.2 The Substitution Lemma.- 5 The Gentzen Calculus G.- 5.1 The Calculus G.- 5.2 Completeness of G.- 6 Normal Forms and Herbrand's Theorem.- 6.1 Normal Forms.- 6.2 Gentzen's Sharpened Hauptsatz.- 6.3 Skolemization and Herbrand's Theorem.- 7 Resolution and Unification.- 7.1 Ground Resolution.- 7.2 Unification.- 7.3 Improving Unification Algorithms.- 7.4 Resolution and Subsumption.- 7.5 Fair Derivation Strategies.- 8 Improving Deduction Efficiency.- 8.1 Delaying Unification.- 8.2 Unit Resolution.- 8.3 Input Resolution.- 8.4 Linear Resolution.- 8.5 Hyperresolution.- 8.6 Semantic Resolution and the Set-of-Support Strategy.- 8.7 Selection and Ordering Concepts.- 8.8 A Notion of Redundancy.- 9 Resolution in Sorted Logic.- 9.1 Introduction.- 9.2 Syntax and Semantics of Elementary Sorted Logic.- 9.3 Relativization.- 9.4 Sorted Logic with Term Declarations.- 9.5 Unification and Resolution in Sorted Signatures.- 9.6 Complexity of Sorted Unification.- References.

A propos de l'auteur

Prof. Dr. Rolf Socher-Ambrosius lehrt am Fachbereich Elektrotechnik und Informatik der Fachhochschule Ostfriesland in Emden.

Détails du produit

Auteurs P. Johann, Patricia Johann, R. Socher-Ambrosius, Rolf Socher-Ambrosius
Edition Springer, Berlin
 
Langues Anglais
Format d'édition Livre Relié
Sortie 01.01.1997
 
EAN 9780387948478
ISBN 978-0-387-94847-8
Pages 206
Poids 564 g
Thèmes Graduate Texts in Computer Science
Graduate Texts in Computer Science
Catégorie Sciences naturelles, médecine, informatique, technique > Informatique, ordinateurs > Informatique

Commentaires des clients

Aucune analyse n'a été rédigée sur cet article pour le moment. Sois le premier à donner ton avis et aide les autres utilisateurs à prendre leur décision d'achat.

Écris un commentaire

Super ou nul ? Donne ton propre avis.

Pour les messages à CeDe.ch, veuillez utiliser le formulaire de contact.

Il faut impérativement remplir les champs de saisie marqués d'une *.

En soumettant ce formulaire, tu acceptes notre déclaration de protection des données.