Fr. 42.90

Python and HDF5 - Unlocking Scientific Data

Anglais · Livre de poche

Expédition généralement dans un délai de 3 à 5 semaines

Description

En savoir plus

Gain hands-on experience with HDF5 for storing scientific data in Python. This practical guide quickly gets you up to speed on the details, best practices, and pitfalls of using HDF5 to archive and share numerical datasets ranging in size from gigabytes to terabytes.
Through real-world examples and practical exercises, you'll explore topics such as scientific datasets, hierarchically organized groups, user-defined metadata, and interoperable files. Examples are applicable for users of both Python 2 and Python 3. If you're familiar with the basics of Python data analysis, this is an ideal introduction to HDF5. Get set up with HDF5 tools and create your first HDF5 file Work with datasets by learning the HDF5 Dataset object Understand advanced features like dataset chunking and compression Learn how to work with HDF5's hierarchical structure, using groups Create self-describing files by adding metadata with HDF5 attributes Take advantage of HDF5's type system to create interoperable files Express relationships among data with references, named types, and dimension scales Discover how Python mechanisms for writing parallel code interact with HDF5

Table des matières










Preface;
Conventions Used in This Book;
Using Code Examples;
Safari® Books Online;
How to Contact Us;
Acknowledgments;
Chapter 1: Introduction;
1.1 Python and HDF5;
1.2 What Exactly Is HDF5?;
Chapter 2: Getting Started;
2.1 HDF5 Basics;
2.2 Setting Up;
2.3 The HDF5 Tools;
2.4 Your First HDF5 File;
Chapter 3: Working with Datasets;
3.1 Dataset Basics;
3.2 Reading and Writing Data;
3.3 Resizing Datasets;
Chapter 4: How Chunking and Compression Can Help You;
4.1 Contiguous Storage;
4.2 Chunked Storage;
4.3 Setting the Chunk Shape;
4.4 Performance Example: Resizable Datasets;
4.5 Filters and Compression;
4.6 Other Filters;
4.7 Third-Party Filters;
Chapter 5: Groups, Links, and Iteration: The "H" in HDF5;
5.1 The Root Group and Subgroups;
5.2 Group Basics;
5.3 Working with Links;
5.4 Iteration and Containership;
5.5 Multilevel Iteration with the Visitor Pattern;
5.6 Copying Objects;
5.7 Object Comparison and Hashing;
Chapter 6: Storing Metadata with Attributes;
6.1 Attribute Basics;
6.2 Real-World Example: Accelerator Particle Database;
Chapter 7: More About Types;
7.1 The HDF5 Type System;
7.2 Integers and Floats;
7.3 Fixed-Length Strings;
7.4 Variable-Length Strings;
7.5 Compound Types;
7.6 Complex Numbers;
7.7 Enumerated Types;
7.8 Booleans;
7.9 The array Type;
7.10 Opaque Types;
7.11 Dates and Times;
Chapter 8: Organizing Data with References, Types, and Dimension Scales;
8.1 Object References;
8.2 Region References;
8.3 Named Types;
8.4 Dimension Scales;
Chapter 9: Concurrency: Parallel HDF5, Threading, and Multiprocessing;
9.1 Python Parallel Basics;
9.2 Threading;
9.3 Multiprocessing;
9.4 MPI and Parallel HDF5;
Chapter 10: Next Steps;
10.1 Asking for Help;
10.2 Contributing;
Index;
Colophon;

A propos de l'auteur










Andrew Collette holds a Ph.D. in physics from UCLA, and works as a laboratory research scientist at the University of Colorado. He has worked with the Python-NumPy-HDF5 stack at two multimillion-dollar research facilities; the first being the Large Plasma Device at UCLA (entirely standardized on HDF5), and the second being the hypervelocity dust accelerator at the Colorado Center for Lunar Dust and Atmospheric Studies, University of Colorado at Boulder. Additionally, Dr. Collette is a leading developer of the HDF5 for Python (h5py) project.


Résumé

Gain hands-on experience with HDF5 for storing scientific data in Python. This practical guide quickly gets you up to speed on the details, best practices, and pitfalls of using HDF5 to archive and share numerical datasets ranging in size from gigabytes to terabytes.

Détails du produit

Auteurs Andrew Collette, Andrew Collete, Andrew Collette
Edition O'Reilly Media
 
Langues Anglais
Format d'édition Livre de poche
Sortie 03.12.2013
 
EAN 9781449367831
ISBN 978-1-4493-6783-1
Pages 152
Dimensions 171 mm x 229 mm x 8 mm
Poids 262 g
Catégories Sciences naturelles, médecine, informatique, technique > Informatique, ordinateurs > Langages de programmation

Programmier- und Skriptsprachen, allgemein, Programmiertechniken

Commentaires des clients

Aucune analyse n'a été rédigée sur cet article pour le moment. Sois le premier à donner ton avis et aide les autres utilisateurs à prendre leur décision d'achat.

Écris un commentaire

Super ou nul ? Donne ton propre avis.

Pour les messages à CeDe.ch, veuillez utiliser le formulaire de contact.

Il faut impérativement remplir les champs de saisie marqués d'une *.

En soumettant ce formulaire, tu acceptes notre déclaration de protection des données.