Fr. 178.00

Algebraic Complexity Theory

Anglais · Livre de poche

Expédition généralement dans un délai de 1 à 2 semaines (titre imprimé sur commande)

Description

En savoir plus

The algorithmic solution of problems has always been one of the major concerns of mathematics. For a long time such solutions were based on an intuitive notion of algorithm. It is only in this century that metamathematical problems have led to the intensive search for a precise and sufficiently general formalization of the notions of computability and algorithm. In the 1930s, a number of quite different concepts for this purpose were pro posed, such as Turing machines, WHILE-programs, recursive functions, Markov algorithms, and Thue systems. All these concepts turned out to be equivalent, a fact summarized in Church's thesis, which says that the resulting definitions form an adequate formalization of the intuitive notion of computability. This had and continues to have an enormous effect. First of all, with these notions it has been possible to prove that various problems are algorithmically unsolvable. Among of group these undecidable problems are the halting problem, the word problem theory, the Post correspondence problem, and Hilbert's tenth problem. Secondly, concepts like Turing machines and WHILE-programs had a strong influence on the development of the first computers and programming languages. In the era of digital computers, the question of finding efficient solutions to algorithmically solvable problems has become increasingly important. In addition, the fact that some problems can be solved very efficiently, while others seem to defy all attempts to find an efficient solution, has called for a deeper under standing of the intrinsic computational difficulty of problems.

Table des matières

1. Introduction.- I. Fundamental Algorithms.- 2. Efficient Polynomial Arithmetic.- 3. Efficient Algorithms with Branching.- II. Elementary Lower Bounds.- 4. Models of Computation.- 5. Preconditioning and Transcendence Degree.- 6. The Substitution Method.- 7. Differential Methods.- III. High Degree.- 8. The Degree Bound.- 9. Specific Polynomials which Are Hard to Compute.- 10. Branching and Degree.- 11. Branching and Connectivity.- 12. Additive Complexity.- IV. Low Degree.- 13. Linear Complexity.- 14. Multiplicative and Bilinear Complexity.- 15. Asymptotic Complexity of Matrix Multiplication.- 16. Problems Related to Matrix Multiplication.- 17. Lower Bounds for the Complexity of Algebras.- 18. Rank over Finite Fields and Codes.- 19. Rank of 2-Slice and 3-Slice Tensors.- 20. Typical Tensorial Rank.- V. Complete Problems.- 21. P Versus NP: A Nonuniform Algebraic Analogue.- List of Notation.

A propos de l'auteur

Peter Bürgisser is an internationally recognized expert in complexity theory. He is associate editor of the journal Computational Complexity and he was invited speaker at the 2010 International Congress Mathematicians.

Commentaire

P. Bürgisser, M. Clausen, M.A. Shokrollahi, and T. Lickteig
Algebraic Complexity Theory
"The book contains interesting exercises and useful bibliographical notes. In short, this is a nice book."-MATHEMATICAL REVIEWS
From the reviews:

"This book is certainly the most complete reference on algebraic complexity theory that is available hitherto. ... superb bibliographical and historical notes are given at the end of each chapter. ... this book would most certainly make a great textbook for a graduate course on algebraic complexity theory. ... In conclusion, any researchers already working in the area should own a copy of this book. ... beginners at the graduate level who have been exposed to undergraduate pure mathematics would find this book accessible." (Anthony Widjaja, SIGACT News, Vol. 37 (2), 2006)

Détails du produit

Auteurs Pete Bürgisser, Peter Bürgisser, Michae Clausen, Michael Clausen, Amin Shokrollahi, M. Amin Shokrollahi, Moh Shokrollahi, Mohammad A. Shokrollahi
Edition Springer, Berlin
 
Langues Anglais
Format d'édition Livre de poche
Sortie 12.10.2010
 
EAN 9783642082283
ISBN 978-3-642-08228-3
Pages 618
Dimensions 155 mm x 34 mm x 235 mm
Poids 967 g
Illustrations XXIII, 618 p.
Thèmes Grundlehren der mathematischen Wissenschaften
Grundlehren der mathematischen Wissenschaften
Catégories Livres pour enfants et adolescents > Livres pour la jeunesse dès 12 ans
Sciences naturelles, médecine, informatique, technique > Mathématiques > Autres

Commentaires des clients

Aucune analyse n'a été rédigée sur cet article pour le moment. Sois le premier à donner ton avis et aide les autres utilisateurs à prendre leur décision d'achat.

Écris un commentaire

Super ou nul ? Donne ton propre avis.

Pour les messages à CeDe.ch, veuillez utiliser le formulaire de contact.

Il faut impérativement remplir les champs de saisie marqués d'une *.

En soumettant ce formulaire, tu acceptes notre déclaration de protection des données.