Fr. 134.00

Completeness and Reduction in Algebraic Complexity Theory

Anglais · Livre de poche

Expédition généralement dans un délai de 1 à 2 semaines (titre imprimé sur commande)

Description

En savoir plus

One of the most important and successful theories in computational complex ity is that of NP-completeness. This discrete theory is based on the Turing machine model and achieves a classification of discrete computational prob lems according to their algorithmic difficulty. Turing machines formalize al gorithms which operate on finite strings of symbols over a finite alphabet. By contrast, in algebraic models of computation, the basic computational step is an arithmetic operation (or comparison) of elements of a fixed field, for in stance of real numbers. Hereby one assumes exact arithmetic. In 1989, Blum, Shub, and Smale [12] combined existing algebraic models of computation with the concept of uniformity and developed a theory of NP-completeness over the reals (BSS-model). Their paper created a renewed interest in the field of algebraic complexity and initiated new research directions. The ultimate goal of the BSS-model (and its future extensions) is to unite classical dis crete complexity theory with numerical analysis and thus to provide a deeper foundation of scientific computation (cf. [11, 101]). Already ten years before the BSS-paper, Valiant [107, 110] had proposed an analogue of the theory of NP-completeness in an entirely algebraic frame work, in connection with his famous hardness result for the permanent [108]. While the part of his theory based on the Turing approach (#P-completeness) is now standard and well-known among the theoretical computer science com munity, his algebraic completeness result for the permanents received much less attention.

Table des matières

1 Introduction.- 2 Valiant's Algebraic Model of NP-Completeness.- 3 Some Complete Families of Polynomials.- 4 Cook's versus Valiant's Hypothesis.- 5 The Structure of Valiant's Complexity Classes.- 6 Fast Evaluation of Representations of General Linear Groups.- 7 The Complexity of Immanants.- 8 Separation Results and Future Directions.- References.- List of Notation.

A propos de l'auteur

Peter Bürgisser is an internationally recognized expert in complexity theory. He is associate editor of the journal Computational Complexity and he was invited speaker at the 2010 International Congress Mathematicians.

Commentaire

".... The subject matter of the book is not easy, since it involves prerequisites from several areas, among them complexity theory, combinatorics, analytic number theory, and representations of symmetric and general linear groups. But the author goes to great lengths to motivate his results, to put them into perspective, and to explain the proofs carefully. In summary, this monograph advances its area of algebraic complexity theory, and is a must for people for working on this subject. And it is a pleasure to read."
Joachim von zur Gathen, Mathematical Reviews, Issue 2001g
 

Détails du produit

Auteurs Peter Bürgisser
Edition Springer, Berlin
 
Langues Anglais
Format d'édition Livre de poche
Sortie 11.10.2010
 
EAN 9783642086045
ISBN 978-3-642-08604-5
Pages 168
Dimensions 155 mm x 10 mm x 235 mm
Poids 289 g
Illustrations XII, 168 p.
Thèmes Algorithms and Computation in Mathematics
Algorithms and Computation in Mathematics
Catégorie Sciences naturelles, médecine, informatique, technique > Mathématiques > Théorie des probabilités, stochastique, statistiques

Commentaires des clients

Aucune analyse n'a été rédigée sur cet article pour le moment. Sois le premier à donner ton avis et aide les autres utilisateurs à prendre leur décision d'achat.

Écris un commentaire

Super ou nul ? Donne ton propre avis.

Pour les messages à CeDe.ch, veuillez utiliser le formulaire de contact.

Il faut impérativement remplir les champs de saisie marqués d'une *.

En soumettant ce formulaire, tu acceptes notre déclaration de protection des données.