Fr. 189.00

Towards a New Evolutionary Computation - Advances on Estimation of Distribution Algorithms

Anglais · Livre de poche

Expédition généralement dans un délai de 6 à 7 semaines

Description

En savoir plus

Estimation of Distribution Algorithms (EDAs) are a set of algorithms in the Evolutionary Computation (EC) field characterized by the use of explicit probability distributions in optimization. Contrarily to other EC techniques such as the broadly known Genetic Algorithms (GAs) in EDAs, the crossover and mutation operators are substituted by the sampling of a distribution previously learnt from the selected individuals. EDAs have experienced a high development that has transformed them into an established discipline within the EC field.
This book attracts the interest of new researchers in the EC field as well as in other optimization disciplines, and that it becomes a reference for all of us working on this topic. The twelve chapters of this book can be divided into those that endeavor to set a sound theoretical basis for EDAs, those that broaden the methodology of EDAs and finally those that have an applied objective.

Table des matières

Linking Entropy to Estimation of Distribution Algorithms.- Entropy-based Convergence Measurement in Discrete Estimation of Distribution Algorithms.- Real-coded Bayesian Optimization Algorithm.- The CMA Evolution Strategy: A Comparing Review.- Estimation of Distribution Programming: EDA-based Approach to Program Generation.- Multi-objective Optimization with the Naive ID A.- A Parallel Island Model for Estimation of Distribution Algorithms.- GA-EDA: A New Hybrid Cooperative Search Evolutionary Algorithm.- Bayesian Classifiers in Optimization: An EDA-like Approach.- Feature Ranking Using an EDA-based Wrapper Approach.- Learning Linguistic Fuzzy Rules by Using Estimation of Distribution Algorithms as the Search Engine in the COR Methodology.- Estimation of Distribution Algorithm with 2-opt Local Search for the Quadratic Assignment Problem.

Résumé

Estimation of Distribution Algorithms (EDAs) are a set of algorithms in the Evolutionary Computation (EC) field characterized by the use of explicit probability distributions in optimization. Contrarily to other EC techniques such as the broadly known Genetic Algorithms (GAs) in EDAs, the crossover and mutation operators are substituted by the sampling of a distribution previously learnt from the selected individuals. EDAs have experienced a high development that has transformed them into an established discipline within the EC field.
This book attracts the interest of new researchers in the EC field as well as in other optimization disciplines, and that it becomes a reference for all of us working on this topic. The twelve chapters of this book can be divided into those that endeavor to set a sound theoretical basis for EDAs, those that broaden the methodology of EDAs and finally those that have an applied objective.

Détails du produit

Collaboration Endika Bengoetxea (Editeur), Iñaki Inza (Editeur), Iñaki Inza et al (Editeur), Pedr Larrañaga (Editeur), Pedro Larrañaga (Editeur), Jose A. Lozano (Editeur)
Edition Springer, Berlin
 
Langues Anglais
Format d'édition Livre de poche
Sortie 11.10.2010
 
EAN 9783642067044
ISBN 978-3-642-06704-4
Pages 294
Dimensions 156 mm x 16 mm x 234 mm
Poids 814 g
Illustrations XVI, 294 p. 109 illus.
Thèmes Studies in Fuzziness and Soft Computing
Studies in Fuzziness and Soft Computing
Catégories Sciences naturelles, médecine, informatique, technique > Technique > Général, dictionnaires

C, Model, Künstliche Intelligenz, Optimization, Artificial Intelligence, Mutation, Angewandte Mathematik, Learning, engineering, Programming, Applications of Mathematics, Mathematical and Computational Engineering, Engineering mathematics, Applied mathematics, Mathematical and Computational Engineering Applications, operator

Commentaires des clients

Aucune analyse n'a été rédigée sur cet article pour le moment. Sois le premier à donner ton avis et aide les autres utilisateurs à prendre leur décision d'achat.

Écris un commentaire

Super ou nul ? Donne ton propre avis.

Pour les messages à CeDe.ch, veuillez utiliser le formulaire de contact.

Il faut impérativement remplir les champs de saisie marqués d'une *.

En soumettant ce formulaire, tu acceptes notre déclaration de protection des données.