Fr. 188.00

Limit Theorems in Probability, Statistics and Number Theory - In Honor of Friedrich Götze

Anglais · Livre Relié

Expédition généralement dans un délai de 2 à 3 semaines (titre imprimé sur commande)

Description

En savoir plus

Limit theorems and asymptotic results form a central topic in probability theory and mathematical statistics. New and non-classical limit theorems have been discovered for processes in random environments, especially in connection with random matrix theory and free probability. These questions and the techniques for answering them combine asymptotic enumerative combinatorics, particle systems and approximation theory, and are important for new approaches in geometric and metric number theory as well. Thus, the contributions in this book include a wide range of applications with surprising connections ranging from longest common subsequences for words, permutation groups, random matrices and free probability to entropy problems and metric number theory.
The book is the product of a conference that took place in August 2011 in Bielefeld, Germany to celebrate the 60th birthday of Friedrich Götze, a noted expert in this field.

Table des matières

W. van Zwet: A conversation with Friedrich Götze.- V. Bernik, V. Beresnevich, F. Götze, O. Kukso: Distribution of algebraic numbers and metric theory of Diophantine approximation.- J. Marklof: Fine-scale statistics for the multidimensional Farey sequence.- S. G. Bobkov, M. M. Madiman: On the problem of reversibility of the entropy power inequality.- G. P. Chistyakov: On probability measures with unbounded angular ratio.- M. Gordin: CLT for stationary normal Markov chains via generalized coboundaries.- T. Mai, R. Speicher: Operator-valued and multivariate free Berry-Esseen theorems.- T. Mai, R. Speicher: Operator-valued and multivariate free Berry-Esseen theorems.- R. Bhattacharya: A nonparametric theory of statistics on manifolds.- J. Lember, H. Matzinger, F. Torres: Proportion of gaps and uctuations of the optimal score in random sequence comparison.- Y. V. Prokhorov, V. V. Ulyanov: Some approximation problems in statistics and probability.- H. Döring, P. Eichelsbacher: Moderate deviations for the determinant of Wigner matrices.- O. Friesen, M. Löwe: The semicircle law for matrices with dependent entries.- A. Tikhomirov: Limit theorems for random matrices.

Résumé

Limit theorems and asymptotic results form a central topic in probability theory and mathematical statistics. New and non-classical limit theorems have been discovered for processes in random environments, especially in connection with random matrix theory and free probability. These questions and the techniques for answering them combine asymptotic enumerative combinatorics, particle systems and approximation theory, and are important for new approaches in geometric and metric number theory as well. Thus, the contributions in this book include a wide range of applications with surprising connections ranging from longest common subsequences for words, permutation groups, random matrices and free probability to entropy problems and metric number theory.
The book is the product of a conference that took place in August 2011 in Bielefeld, Germany to celebrate the 60th birthday of Friedrich Götze, a noted expert in this field.

Détails du produit

Collaboration Peter Eichelsbacher (Editeur), Guid Elsner (Editeur), Guido Elsner (Editeur), Holger Kösters (Editeur), Holger Kösters et al (Editeur), Matthias Löwe (Editeur), Franz Merkl (Editeur), Silke Rolles (Editeur)
Edition Springer, Berlin
 
Langues Anglais
Format d'édition Livre Relié
Sortie 14.12.2012
 
EAN 9783642360671
ISBN 978-3-642-36067-1
Pages 317
Dimensions 156 mm x 19 mm x 244 mm
Poids 654 g
Illustrations VIII, 317 p.
Thèmes Springer Proceedings in Mathematics & Statistics
Springer Proceedings in Mathematics & Statistics
Catégorie Sciences naturelles, médecine, informatique, technique > Mathématiques > Théorie des probabilités, stochastique, statistiques

Commentaires des clients

Aucune analyse n'a été rédigée sur cet article pour le moment. Sois le premier à donner ton avis et aide les autres utilisateurs à prendre leur décision d'achat.

Écris un commentaire

Super ou nul ? Donne ton propre avis.

Pour les messages à CeDe.ch, veuillez utiliser le formulaire de contact.

Il faut impérativement remplir les champs de saisie marqués d'une *.

En soumettant ce formulaire, tu acceptes notre déclaration de protection des données.