Fr. 83.00

Topological Methods in Group Theory

Anglais · Livre de poche

Expédition généralement dans un délai de 1 à 2 semaines (titre imprimé sur commande)

Description

En savoir plus

Topological Methods in Group Theory is about the interplay between algebraic topology and the theory of infinite discrete groups. The author has kept three kinds of readers in mind: graduate students who have had an introductory course in algebraic topology and who need a bridge from common knowledge to the current research literature in geometric, combinatorial and homological group theory; group theorists who would like to know more about the topological side of their subject but who have been too long away from topology; and manifold topologists, both high- and low-dimensional, since the book contains much basic material on proper homotopy and locally finite homology not easily found elsewhere.
The book focuses on two main themes:
1. Topological Finiteness Properties of groups (generalizing the classical notions of "finitely generated" and "finitely presented");
2. Asymptotic Aspects of Infinite Groups (generalizing the classical notion of "the number of ends of a group").
Illustrative examples treated in some detail include: Bass-Serre theory, Coxeter groups, Thompson groups, Whitehead's contractible 3-manifold, Davis's exotic contractible manifolds in dimensions greater than three, the Bestvina-Brady Theorem, and the Bieri-Neumann-Strebel invariant. The book also includes a highly geometrical treatment of Poincaré duality (via cells and dual cells) to bring out the topological meaning of Poincaré duality groups.
To keep the length reasonable and the focus clear, it is assumed that the reader knows or can easily learn the necessary algebra (which is clearly summarized) but wants to see the topology done in detail. Apart from the introductory material, most of the mathematics presented here has not appeared in book form before.

Table des matières

Algebraic Topology for Group Theory.- CW Complexes and Homotopy.- Cellular Homology.- Fundamental Group and Tietze Transformation.- Some Techniques in Homotopy Theory.- Elementary Geometric Topology.- Finiteness Properties of Groups.- The Borel Construction and Bass-Serre Theory.- Topological Finiteness Properties and Dimension of Groups.- Homological Finiteness Properties of Groups.- Finiteness Properties of Some Important Groups.- Locally Finite Algebraic Topology for Group Theory.- Locally Finite CW Complexes and Proper Homotopy.- Locally Finite Homology.- Cohomology of CW Complexes.- Topics in the Cohomology of Infinite Groups.- Cohomology of Groups and Ends of Covering Spaces.- Filtered Ends of Pairs of Groups.- Poincaré Duality in Manifolds and Groups.- Homotopical Group Theory.- The Fundamental Group At Infinity.- Higher homotopy theory of groups.- Three Essays.- Three Essays.

Résumé

This book is about the interplay between algebraic topology and the theory of infinite discrete groups. It is a hugely important contribution to the field of topological and geometric group theory, and is bound to become a standard reference in the field. To keep the length reasonable and the focus clear, the author assumes the reader knows or can easily learn the necessary algebra, but wants to see the topology done in detail. The central subject of the book is the theory of ends. Here the author adopts a new algebraic approach which is geometric in spirit.

Texte suppl.

From the reviews:
"The author of this book has done a great service to the geometric group theory community by writing a very useful and well-written book on many topics in geometric group theory that every neophyte and researcher in the field should know. … This book is suitable as a textbook for a graduate course, with many good examples and exercises. The reviewer highly recommends this book as a basic reference book for topological methods in group theory." (John G. Ratcliffe, Mathematical Reviews, Issue 2008 j)
"This is an interesting book on the interplay between algebraic topology and the theory of infinite discrete groups written for graduate students and group theorists who need to learn more in geometric and homological group theory. … It is a beautiful text in algebraic topology, with modern topics and which points the reader towards new research directions." (Corina Mohorianu, Zentralblatt MATH, Vol. 1142, 2008)
“This book is an invaluable resource for anyone wanting a deep understanding of topics related to the ends of groups. … there is a good deal of material in this book that does not appear anywhere else in the literature. … Geoghegan’s book provides a well-presented, concrete development of geometric group theory focused on a topological approach.” (John Meier, Bulletin of the American Mathematical Society, July, 2012)

Commentaire

From the reviews:

"The author of this book has done a great service to the geometric group theory community by writing a very useful and well-written book on many topics in geometric group theory that every neophyte and researcher in the field should know. ... This book is suitable as a textbook for a graduate course, with many good examples and exercises. The reviewer highly recommends this book as a basic reference book for topological methods in group theory." (John G. Ratcliffe, Mathematical Reviews, Issue 2008 j)
"This is an interesting book on the interplay between algebraic topology and the theory of infinite discrete groups written for graduate students and group theorists who need to learn more in geometric and homological group theory. ... It is a beautiful text in algebraic topology, with modern topics and which points the reader towards new research directions." (Corina Mohorianu, Zentralblatt MATH, Vol. 1142, 2008)
"This book is an invaluable resource for anyone wanting a deep understanding of topics related to the ends of groups. ... there is a good deal of material in this book that does not appear anywhere else in the literature. ... Geoghegan's book provides a well-presented, concrete development of geometric group theory focused on a topological approach." (John Meier, Bulletin of the American Mathematical Society, July, 2012)

Détails du produit

Auteurs Ross Geoghegan
Edition Springer, Berlin
 
Langues Anglais
Format d'édition Livre de poche
Sortie 26.10.2010
 
EAN 9781441925640
ISBN 978-1-4419-2564-0
Pages 473
Dimensions 156 mm x 28 mm x 235 mm
Poids 738 g
Illustrations XVI, 473 p. 41 illus.
Thèmes Graduate Texts in Mathematics
Graduate Texts in Mathematics
Catégories Sciences naturelles, médecine, informatique, technique > Mathématiques > Arithmétique, algèbre

B, Group Theory, Mathematics and Statistics, Topology, Topological Groups, Lie Groups, Topological groups, Lie groups, Topological Groups and Lie Groups, Groups & group theory, Group Theory and Generalizations

Commentaires des clients

Aucune analyse n'a été rédigée sur cet article pour le moment. Sois le premier à donner ton avis et aide les autres utilisateurs à prendre leur décision d'achat.

Écris un commentaire

Super ou nul ? Donne ton propre avis.

Pour les messages à CeDe.ch, veuillez utiliser le formulaire de contact.

Il faut impérativement remplir les champs de saisie marqués d'une *.

En soumettant ce formulaire, tu acceptes notre déclaration de protection des données.