Fr. 69.00

Algebra II - Noncommutative Rings Identities

Anglais · Livre de poche

Expédition généralement dans un délai de 1 à 2 semaines (titre imprimé sur commande)

Description

En savoir plus

The algebra of square matrices of size n ~ 2 over the field of complex numbers is, evidently, the best-known example of a non-commutative alge 1 bra - Subalgebras and subrings of this algebra (for example, the ring of n x n matrices with integral entries) arise naturally in many areas of mathemat ics. Historically however, the study of matrix algebras was preceded by the discovery of quatemions which, introduced in 1843 by Hamilton, found ap plications in the classical mechanics of the past century. Later it turned out that quaternion analysis had important applications in field theory. The al gebra of quaternions has become one of the classical mathematical objects; it is used, for instance, in algebra, geometry and topology. We will briefly focus on other examples of non-commutative rings and algebras which arise naturally in mathematics and in mathematical physics. The exterior algebra (or Grassmann algebra) is widely used in differential geometry - for example, in geometric theory of integration. Clifford algebras, which include exterior algebras as a special case, have applications in rep resentation theory and in algebraic topology. The Weyl algebra (Le. algebra of differential operators with· polynomial coefficients) often appears in the representation theory of Lie algebras. In recent years modules over the Weyl algebra and sheaves of such modules became the foundation of the so-called microlocal analysis. The theory of operator algebras (Le.

Table des matières

I. Noncommutative Rings.- II. Identities.- Author Index.

Détails du produit

Collaboration I Kostrikin (Editeur), A I Kostrikin (Editeur), A. I. Kostrikin (Editeur), A.I. Kostrikin (Editeur), R Shafarevich (Editeur), R Shafarevich (Editeur), I. R. Shafarevich (Editeur), I.R. Shafarevich (Editeur), E. Behr (Traduction)
Edition Springer, Berlin
 
Langues Anglais
Format d'édition Livre de poche
Sortie 16.11.2012
 
EAN 9783642729010
ISBN 978-3-642-72901-0
Pages 234
Dimensions 155 mm x 229 mm x 14 mm
Poids 381 g
Illustrations VII, 234 p.
Thèmes Encyclopaedia of Mathematical Sciences
Encyclopaedia of Mathematical Sciences
Catégorie Sciences naturelles, médecine, informatique, technique > Mathématiques > Arithmétique, algèbre

Commentaires des clients

Aucune analyse n'a été rédigée sur cet article pour le moment. Sois le premier à donner ton avis et aide les autres utilisateurs à prendre leur décision d'achat.

Écris un commentaire

Super ou nul ? Donne ton propre avis.

Pour les messages à CeDe.ch, veuillez utiliser le formulaire de contact.

Il faut impérativement remplir les champs de saisie marqués d'une *.

En soumettant ce formulaire, tu acceptes notre déclaration de protection des données.