Fr. 117.00

A Compendium of Continuous Lattices

Anglais · Livre de poche

Expédition généralement dans un délai de 6 à 7 semaines

Description

En savoir plus

A mathematics book with six authors is perhaps a rare enough occurrence to make a reader ask how such a collaboration came about. We begin, therefore, with a few words on how we were brought to the subject over a ten-year period, during part of which time we did not all know each other. We do not intend to write here the history of continuous lattices but rather to explain our own personal involvement. History in a more proper sense is provided by the bibliography and the notes following the sections of the book, as well as by many remarks in the text. A coherent discussion of the content and motivation of the whole study is reserved for the introduction. In October of 1969 Dana Scott was lead by problems of semantics for computer languages to consider more closely partially ordered structures of function spaces. The idea of using partial orderings to correspond to spaces of partially defined functions and functionals had appeared several times earlier in recursive function theory; however, there had not been very sustained interest in structures of continuous functionals. These were the ones Scott saw that he needed. His first insight was to see that - in more modern terminology - the category of algebraic lattices and the (so-called) Scott-continuous functions is cartesian closed.

Table des matières

O. A Primer of Complete Lattices.- 1. Generalities and notation.- 2. Complete lattices.- 3. Galois connections.- 4. Meet-continuous lattices.- I. Lattice Theory of Continuous Lattices.- 1. The "way-below" relation.- 2. The equational characterization.- 3. Irreducible elements.- 4. Algebraic lattices.- II. Topology of Continuous Lattices: The Scott Topology.- 1. The Scott topology.- 2. Scott-continuous functions.- 3. Injective spaces.- 4. Function spaces.- III. Topology of Continuous Lattices: The Lawson Topology.- 1. The Lawson topology.- 2. Meet-continuous lattices revisited.- 3. Lim-inf convergence.- 4. Bases and weights.- IV. Morphisms and Functors.- 1. Duality theory.- 2. Morphisms into chains.- 3. Projective limits and functors which preserve them.- 4. Fixed point construction for functors.- V. Spectral Theory of Continuous Lattices.- 1. The Lemma.- 2. Order generation and topological generation.- 3. Weak irreducibles and weakly prime elements.- 4. Sober spaces and complete lattices.- 5. Duality for continuous Heyting algebras.- VI. Compact Posets and Semilattices.- 1. Pospaces and topological semilattices.- 2. Compact topological semilattices.- 3. The fundamental theorem of compact semilattices.- 4. Some important examples.- 5. Chains in compact pospaces and semilattices.- VII. Topological Algebra and Lattice Theory: Applications.- 1. One-sided topological semilattices.- 2. Topological lattices.- 3. Compact pospaces and continuous Heyting algebras.- 4. Lattices with continuous Scott topology.- Listof Symbols.- List of Categories.

Résumé

A mathematics book with six authors is perhaps a rare enough occurrence to make a reader ask how such a collaboration came about. We begin, therefore, with a few words on how we were brought to the subject over a ten-year period, during part of which time we did not all know each other. We do not intend to write here the history of continuous lattices but rather to explain our own personal involvement. History in a more proper sense is provided by the bibliography and the notes following the sections of the book, as well as by many remarks in the text. A coherent discussion of the content and motivation of the whole study is reserved for the introduction. In October of 1969 Dana Scott was lead by problems of semantics for computer languages to consider more closely partially ordered structures of function spaces. The idea of using partial orderings to correspond to spaces of partially defined functions and functionals had appeared several times earlier in recursive function theory; however, there had not been very sustained interest in structures of continuous functionals. These were the ones Scott saw that he needed. His first insight was to see that - in more modern terminology - the category of algebraic lattices and the (so-called) Scott-continuous functions is cartesian closed.

Détails du produit

Auteurs Gierz, G Gierz, G. Gierz, K Hofmann, K H Hofmann, K. H. Hofmann, K et al Keimel, K. Keimel, J. D. Lawson, M. Mislove, D. S. Scott
Edition Springer, Berlin
 
Langues Anglais
Format d'édition Livre de poche
Sortie 04.12.2012
 
EAN 9783642676802
ISBN 978-3-642-67680-2
Pages 371
Dimensions 170 mm x 243 mm x 22 mm
Illustrations XX, 371 p.
Catégories Sciences naturelles, médecine, informatique, technique > Mathématiques > Arithmétique, algèbre

Algebra, Computer, B, TIME, Language, Story, Functional, Function, Mathematics, Collaboration, Mathematics and Statistics, Semantics, Function space, boundary element method, functions

Commentaires des clients

Aucune analyse n'a été rédigée sur cet article pour le moment. Sois le premier à donner ton avis et aide les autres utilisateurs à prendre leur décision d'achat.

Écris un commentaire

Super ou nul ? Donne ton propre avis.

Pour les messages à CeDe.ch, veuillez utiliser le formulaire de contact.

Il faut impérativement remplir les champs de saisie marqués d'une *.

En soumettant ce formulaire, tu acceptes notre déclaration de protection des données.