Fr. 189.00

Dynamic NMR Spectroscopy

Anglais · Livre de poche

Expédition généralement dans un délai de 6 à 7 semaines

Description

En savoir plus

Since the first successful NMR experiments in 1946 it was well appreciated that dynamic processes play an important role in the NMR spectroscopy of bulk matter [1]. Early theories on the dependence of the relaxation parameters Tl and T2 on the motions of nuclear spins were successful in explaining the dipolar broadening of the NMR signal in solids and the motional narrowing in liquids [2]. With the discovery of chemical shifts and spin-spin couplings another type of dynamical process affect ing the NMR line shape became apparent, the chemical exchange. As a consequence, dynamical NMR studies split into two groups differing not only in the dynamical topics but also in the method of investigation: physical studies of the motion of spins in liquids and solids by measurement of the relaxation times of single resonances and, on the other hand, chemical studies based on band shape analysis of NMR spectra recorded under steady state conditions. The two fields of research lost some of their basic differences with the development of the Fourier transform NMR method [3], which allows the measurement of relaxation times of different resonances at the same time, i. e. the study of differential motional behavior of different parts of mole cules, thus providing a new tool in conformational analyses. For example, informa tion can be obtained by this method on the relative importance of overall motions and internal motions [4].

Table des matières

Mechanistic Studies of Rearrangements and Exchange Reactions by Dynamic NMR Spectroscopy.- Rotation of Molecules and Nuclear Spin Relaxation.

Résumé

Since the first successful NMR experiments in 1946 it was well appreciated that dynamic processes play an important role in the NMR spectroscopy of bulk matter [1]. Early theories on the dependence of the relaxation parameters Tl and T2 on the motions of nuclear spins were successful in explaining the dipolar broadening of the NMR signal in solids and the motional narrowing in liquids [2]. With the discovery of chemical shifts and spin-spin couplings another type of dynamical process affect ing the NMR line shape became apparent, the chemical exchange. As a consequence, dynamical NMR studies split into two groups differing not only in the dynamical topics but also in the method of investigation: physical studies of the motion of spins in liquids and solids by measurement of the relaxation times of single resonances and, on the other hand, chemical studies based on band shape analysis of NMR spectra recorded under steady state conditions. The two fields of research lost some of their basic differences with the development of the Fourier transform NMR method [3], which allows the measurement of relaxation times of different resonances at the same time, i. e. the study of differential motional behavior of different parts of mole cules, thus providing a new tool in conformational analyses. For example, informa tion can be obtained by this method on the relative importance of overall motions and internal motions [4].

Détails du produit

Edition Springer, Berlin
 
Langues Anglais
Format d'édition Livre de poche
Sortie 04.12.2012
 
EAN 9783642669637
ISBN 978-3-642-66963-7
Pages 214
Illustrations 214 p.
Thèmes NMR Basic Principles and Progress
NMR Basic Principles and Progress
Catégories Sciences naturelles, médecine, informatique, technique > Chimie > Chimie physique

C, Spin, reactions, Chemistry and Materials Science, spectroscopy, Spectroscopy/Spectrometry, fields, molecule, nuclear magnetic resonance (NMR), spectra

Commentaires des clients

Aucune analyse n'a été rédigée sur cet article pour le moment. Sois le premier à donner ton avis et aide les autres utilisateurs à prendre leur décision d'achat.

Écris un commentaire

Super ou nul ? Donne ton propre avis.

Pour les messages à CeDe.ch, veuillez utiliser le formulaire de contact.

Il faut impérativement remplir les champs de saisie marqués d'une *.

En soumettant ce formulaire, tu acceptes notre déclaration de protection des données.