Fr. 116.00

Lectures on Vanishing Theorems - Papers of a DMV-seminar on algebraic geometry, Schloß Reisensburg, October 13-19, 1991

Anglais · Livre de poche

Expédition généralement dans un délai de 1 à 2 semaines (titre imprimé sur commande)

Description

En savoir plus

Introduction M. Kodaira's vanishing theorem, saying that the inverse of an ample invert ible sheaf on a projective complex manifold X has no cohomology below the dimension of X and its generalization, due to Y. Akizuki and S. Nakano, have been proven originally by methods from differential geometry ([39J and [1]). Even if, due to J.P. Serre's GAGA-theorems [56J and base change for field extensions the algebraic analogue was obtained for projective manifolds over a field k of characteristic p = 0, for a long time no algebraic proof was known and no generalization to p 0, except for certain lower dimensional manifolds. Worse, counterexamples due to M. Raynaud [52J showed that in characteristic p 0 some additional assumptions were needed. This was the state of the art until P. Deligne and 1. Illusie [12J proved the degeneration of the Hodge to de Rham spectral sequence for projective manifolds X defined over a field k of characteristic p 0 and liftable to the second Witt vectors W2(k). Standard degeneration arguments allow to deduce the degeneration of the Hodge to de Rham spectral sequence in characteristic zero, as well, a re sult which again could only be obtained by analytic and differential geometric methods beforehand. As a corollary of their methods M. Raynaud (loc. cit.) gave an easy proof of Kodaira vanishing in all characteristics, provided that X lifts to W2(k).

Table des matières


1 Kodaira's vanishing theorem, a general discussion.-
2 Logarithmic de Rham complexes.-
3 Integral parts of Q-divisors and coverings.-
4 Vanishing theorems, the formal set-up.-
5 Vanishing theorems for invertible sheaves.-
6 Differential forms and higher direct images.-
7 Some applications of vanishing theorems.-
8 Characteristic p methods: Lifting of schemes.-
9 The Frobenius and its liftings.-
10 The proof of Deligne and Illusie [12].-
11 Vanishing theorems in characteristic p.-
12 Deformation theory for cohomology groups.-
13 Generic vanishing theorems [26], [14].- Appendix: Hypercohomology and spectral sequences.- References.

Détails du produit

Auteurs Esnaul, Esnault, Esnault, Helene Esnault, Eckart Viehweg, Vieweg, Vieweg
Edition Springer, Basel
 
Langues Anglais
Format d'édition Livre de poche
Sortie 01.01.1992
 
EAN 9783764328221
ISBN 978-3-7643-2822-1
Pages 166
Poids 332 g
Illustrations VIII, 166 p.
Thèmes DMV Seminar
Oberwolfach Seminars
DMV Seminar
Catégories Sciences humaines, art, musique > Sciences humaines en général
Sciences naturelles, médecine, informatique, technique > Mathématiques > Arithmétique, algèbre
Sciences sociales, droit, économie > Sciences sociales en général

Commentaires des clients

Aucune analyse n'a été rédigée sur cet article pour le moment. Sois le premier à donner ton avis et aide les autres utilisateurs à prendre leur décision d'achat.

Écris un commentaire

Super ou nul ? Donne ton propre avis.

Pour les messages à CeDe.ch, veuillez utiliser le formulaire de contact.

Il faut impérativement remplir les champs de saisie marqués d'une *.

En soumettant ce formulaire, tu acceptes notre déclaration de protection des données.