Fr. 274.00

Resampling Methods for Dependent Data

Anglais · Livre de poche

Expédition généralement dans un délai de 6 à 7 semaines

Description

En savoir plus

This is a book on bootstrap and related resampling methods for temporal and spatial data exhibiting various forms of dependence. Like the resam pling methods for independent data, these methods provide tools for sta tistical analysis of dependent data without requiring stringent structural assumptions. This is an important aspect of the resampling methods in the dependent case, as the problem of model misspecification is more preva lent under dependence and traditional statistical methods are often very sensitive to deviations from model assumptions. Following the tremendous success of Efron's (1979) bootstrap to provide answers to many complex problems involving independent data and following Singh's (1981) example on the inadequacy of the method under dependence, there have been several attempts in the literature to extend the bootstrap method to the dependent case. A breakthrough was achieved when resampling of single observations was replaced with block resampling, an idea that was put forward by Hall (1985), Carlstein (1986), Kiinsch (1989), Liu and Singh (1992), and others in various forms and in different inference problems. There has been a vig orous development in the area of res amp ling methods for dependent data since then and it is still an area of active research. This book describes various aspects of the theory and methodology of resampling methods for dependent data developed over the last two decades. There are mainly two target audiences for the book, with the level of exposition of the relevant parts tailored to each audience.

Table des matières

1 Scope of Resampling Methods for Dependent Data.- 2 Bootstrap Methods.- 3 Properties of Block Bootstrap Methods for the Sample Mean.- 4 Extensions and Examples.- 5 Comparison of Block Bootstrap Methods.- 6 Second-Order Properties.- 7 Empirical Choice of the Block Size.- 8 Model-Based Bootstrap.- 9 Frequency Domain Bootstrap.- 10 Long-Range Dependence.- 11 Bootstrapping Heavy-Tailed Data and Extremes.- 12 Resampling Methods for Spatial Data.- A.- B.- References.- Author Index.

Résumé

This is a book on bootstrap and related resampling methods for temporal and spatial data exhibiting various forms of dependence. Like the resam pling methods for independent data, these methods provide tools for sta tistical analysis of dependent data without requiring stringent structural assumptions. This is an important aspect of the resampling methods in the dependent case, as the problem of model misspecification is more preva lent under dependence and traditional statistical methods are often very sensitive to deviations from model assumptions. Following the tremendous success of Efron's (1979) bootstrap to provide answers to many complex problems involving independent data and following Singh's (1981) example on the inadequacy of the method under dependence, there have been several attempts in the literature to extend the bootstrap method to the dependent case. A breakthrough was achieved when resampling of single observations was replaced with block resampling, an idea that was put forward by Hall (1985), Carlstein (1986), Kiinsch (1989), Liu and Singh (1992), and others in various forms and in different inference problems. There has been a vig orous development in the area of res amp ling methods for dependent data since then and it is still an area of active research. This book describes various aspects of the theory and methodology of resampling methods for dependent data developed over the last two decades. There are mainly two target audiences for the book, with the level of exposition of the relevant parts tailored to each audience.

Détails du produit

Auteurs S N Lahiri, S. N. Lahiri
Edition Springer, Berlin
 
Langues Anglais
Format d'édition Livre de poche
Sortie 27.10.2010
 
EAN 9781441918482
ISBN 978-1-4419-1848-2
Pages 374
Dimensions 153 mm x 22 mm x 239 mm
Poids 606 g
Illustrations XIV, 374 p.
Thèmes Springer Series in Statistics
Springer Series in Statistics
Catégories Sciences naturelles, médecine, informatique, technique > Mathématiques > Théorie des probabilités, stochastique, statistiques

B, Statistics, Mathematics and Statistics, Statistical Theory and Methods, permutation tests

Commentaires des clients

Aucune analyse n'a été rédigée sur cet article pour le moment. Sois le premier à donner ton avis et aide les autres utilisateurs à prendre leur décision d'achat.

Écris un commentaire

Super ou nul ? Donne ton propre avis.

Pour les messages à CeDe.ch, veuillez utiliser le formulaire de contact.

Il faut impérativement remplir les champs de saisie marqués d'une *.

En soumettant ce formulaire, tu acceptes notre déclaration de protection des données.