Fr. 66.00

Machine Learning for Hackers - Case studies and algorithms to get you started

Anglais · Livre de poche

Expédition généralement dans un délai de 3 à 5 semaines

Description

En savoir plus

If you re an experienced programmer interested in crunching data, this book will get you started with machine learning a toolkit of algorithms that enables computers to train themselves to automate useful tasks. Authors Drew Conway and John Myles White help you understand machine learning and statistics tools through a series of hands-on case studies, instead of a traditional math-heavy presentation.
Each chapter focuses on a specific problem in machine learning, such as classification, prediction, optimization, and recommendation. Using the R programming language, you ll learn how to analyze sample datasets and write simple machine learning algorithms. Machine Learning for Hackers is ideal for programmers from any background, including business, government, and academic research. Develop a na

Table des matières










Preface;
Machine Learning for Hackers;
How This Book Is Organized;
Conventions Used in This Book;
Using Code Examples;
Safari® Books Online;
How to Contact Us;
Acknowledgements;
Chapter 1: Using R;
1.1 R for Machine Learning;
Chapter 2: Data Exploration;
2.1 Exploration versus Confirmation;
2.2 What Is Data?;
2.3 Inferring the Types of Columns in Your Data;
2.4 Inferring Meaning;
2.5 Numeric Summaries;
2.6 Means, Medians, and Modes;
2.7 Quantiles;
2.8 Standard Deviations and Variances;
2.9 Exploratory Data Visualization;
2.10 Visualizing the Relationships Between Columns;
Chapter 3: Classification: Spam Filtering;
3.1 This or That: Binary Classification;
3.2 Moving Gently into Conditional Probability;
3.3 Writing Our First Bayesian Spam Classifier;
Chapter 4: Ranking: Priority Inbox;
4.1 How Do You Sort Something When You Don't Know the Order?;
4.2 Ordering Email Messages by Priority;
4.3 Writing a Priority Inbox;
Chapter 5: Regression: Predicting Page Views;
5.1 Introducing Regression;
5.2 Predicting Web Traffic;
5.3 Defining Correlation;
Chapter 6: Regularization: Text Regression;
6.1 Nonlinear Relationships Between Columns: Beyond Straight Lines;
6.2 Methods for Preventing Overfitting;
6.3 Text Regression;
Chapter 7: Optimization: Breaking Codes;
7.1 Introduction to Optimization;
7.2 Ridge Regression;
7.3 Code Breaking as Optimization;
Chapter 8: PCA: Building a Market Index;
8.1 Unsupervised Learning;
Chapter 9: MDS: Visually Exploring US Senator Similarity;
9.1 Clustering Based on Similarity;
9.2 How Do US Senators Cluster?;
Chapter 10: kNN: Recommendation Systems;
10.1 The k-Nearest Neighbors Algorithm;
10.2 R Package Installation Data;
Chapter 11: Analyzing Social Graphs;
11.1 Social Network Analysis;
11.2 Hacking Twitter Social Graph Data;
11.3 Analyzing Twitter Networks;
Chapter 12: Model Comparison;
12.1 SVMs: The Support Vector Machine;
12.2 Comparing Algorithms;
Works Citedbooks and publicationsbibliography ofresourcesbooks and publications; website resourcesstatisticsresources formachine learningresources forR programming languageresources for;
Colophon;

A propos de l'auteur

John Myles White is a PhD candidate in Psychology at Princeton. He studies pattern recognition, decision-making, and economic behavior using behavioral methods and fMRI. He is particularly interested in anomalies of value assessment.

Résumé

Now that storage and collection technologies are cheaper and more precise, methods for extracting relevant information from large datasets is within the reach any experienced programmer willing to crunch data.

Détails du produit

Auteurs Conwa, Dre Conway, Drew Conway, Conway Drew, Myles White, John Myles White, John White, John Myles White
Edition O'Reilly Media
 
Langues Anglais
Format d'édition Livre de poche
Sortie 01.04.2012
 
EAN 9781449303716
ISBN 978-1-4493-0371-6
Pages 322
Poids 530 g
Illustrations w. ill.
Catégories Sciences naturelles, médecine, informatique, technique > Informatique, ordinateurs > Communication des données, réseaux

Programmiertechniken, COMPUTERS / Data Science / Machine Learning

Commentaires des clients

Aucune analyse n'a été rédigée sur cet article pour le moment. Sois le premier à donner ton avis et aide les autres utilisateurs à prendre leur décision d'achat.

Écris un commentaire

Super ou nul ? Donne ton propre avis.

Pour les messages à CeDe.ch, veuillez utiliser le formulaire de contact.

Il faut impérativement remplir les champs de saisie marqués d'une *.

En soumettant ce formulaire, tu acceptes notre déclaration de protection des données.