En savoir plus
Informationen zum Autor Helmut Schwichtenberg is an Emeritus Professor of Mathematics at Ludwig-Maximilians-Universität München. He has recently developed the 'proof-assistant' MINLOG, a computer-implemented logic system for proof/program development and extraction of computational content. Klappentext Driven by the question, 'What is the computational content of a (formal) proof?', this book studies fundamental interactions between proof theory and computability. It provides a unique self-contained text for advanced students and researchers in mathematical logic and computer science. Part I covers basic proof theory, computability and G?el's theorems. Part II studies and classifies provable recursion in classical systems, from fragments of Peano arithmetic up to ?-CA0. Ordinal analysis and the (Schwichtenberg-Wainer) subrecursive hierarchies play a central role and are used in proving the 'modified finite Ramsey' and 'extended Kruskal' independence results for PA and ?-CA0. Part III develops the theoretical underpinnings of the first author's proof assistant MINLOG. Three chapters cover higher-type computability via information systems, a constructive theory TCF of computable functionals, realizability, Dialectica interpretation, computationally significant quantifiers and connectives and polytime complexity in a two-sorted, higher-type arithmetic with linear logic. Zusammenfassung Written by acknowledged experts! for advanced students and researchers in mathematical logic and computer science! this volume provides a detailed! self-contained coverage of proof theory in both classical and constructive arithmetics! up to finitely iterated inductive definitions. Deep connections with computability! complexity and program extraction form the principal themes. Inhaltsverzeichnis Preface; Preliminaries; Part I. Basic Proof Theory and Computability: 1. Logic; 2. Recursion theory; 3. Godel's theorems; Part II. Provable Recursion in Classical Systems: 4. The provably recursive functions of arithmetic; 5. Accessible recursive functions, ID...