Fr. 116.00
Steven Krantz, Steven G Krantz, Steven G. Krantz, Harold R Parks, Harold R. Parks
A Primer of Real Analytic Functions
Englisch · Fester Einband
Versand in der Regel in 2 bis 3 Wochen (Titel wird auf Bestellung gedruckt)
Beschreibung
It is a pleasure and a privilege to write this new edition of A Primer 0/ Real Ana lytic Functions. The theory of real analytic functions is the wellspring of mathe matical analysis. It is remarkable that this is the first book on the subject, and we want to keep it up to date and as correct as possible. With these thoughts in mind, we have utilized helpful remarks and criticisms from many readers and have thereby made numerous emendations. We have also added material. There is a now a treatment of the Weierstrass preparation theorem, a new argument to establish Hensel's lemma and Puiseux's theorem, a new treat ment of Faa di Bruno's forrnula, a thorough discussion of topologies on spaces of real analytic functions, and a second independent argument for the implicit func tion theorem. We trust that these new topics will make the book more complete, and hence a more useful reference. It is a pleasure to thank our editor, Ann Kostant of Birkhäuser Boston, for mak ing the publishing process as smooth and trouble-free as possible. We are grateful for useful communications from the readers of our first edition, and we look for ward to further constructive feedback.
Inhaltsverzeichnis
1 Elementary Properties.- 1.1 Basic Properties of Power Series.- 1.2 Analytic Continuation.- 1.3 The Formula of Faà di Bruno.- 1.4 Composition of Real Analytic Functions.- 1.5 Inverse Functions.- 2 Multivariable Calculus of Real Analytic Functions.- 2.1 Power Series in Several Variables.- 2.2 Real Analytic Functions of Several Variables.- 2.3 The Implicit function Theorem.- 2.4 A Special Case of the Cauchy-Kowalewsky Theorem.- 2.5 The Inverse function Theorem.- 2.6 Topologies on the Space of Real Analytic Functions.- 2.7 Real Analytic Submanifolds.- 2.8 The General Cauchy-Kowalewsky Theorem.- 3 Classical Topics.- 3.0 Introductory Remarks.- 3.1 The Theorem ofPringsheim and Boas.- 3.2 Besicovitch's Theorem.- 3.3 Whitney's Extension and Approximation Theorems.- 3.4 The Theorem of S. Bernstein.- 4 Some Questions of Hard Analysis.- 4.1 Quasi-analytic and Gevrey Classes.- 4.2 Puiseux Series.- 4.3 Separate Real Analyticity.- 5 Results Motivated by Partial Differential Equations.- 5.1 Division of Distributions I.- 5.2 Division of Distributions II.- 5.3 The FBI Transform.- 5.4 The Paley-Wiener Theorem.- 6 Topics in Geometry.- 6.1 The Weierstrass Preparation Theorem.- 6.2 Resolution of Singularities.- 6.3 Lojasiewicz's Structure Theorem for Real Analytic Varieties.- 6.4 The Embedding of Real Analytic Manifolds.- 6.5 Semianalytic and Subanalytic Sets.- 6.5.1 Basic Definitions.
Über den Autor / die Autorin
Steven Krantz, Ph.D., is Chairman of the Mathematics Department at Washington University in St. Louis. An award-winning teacher and author, Dr. Krantz has written more than 45 books on mathematics, including Calculus Demystified, another popular title in this series. He lives in St. Louis, Missouri.
Zusammenfassung
"This well-organized and clearly written advanced textbook introduces students to real analytic functions of one or more real variables. Many historical remarks, examples and references to the literature encourage the beginner to study further this ample, valuable and exciting theory." (1st ed.) New to the 2nd ed.: A more revised and comprehensive treatment of the Faà di Bruno formula * An alternative treatment of the implicit function theorem * Topologies on the space of real analytic functions * The Weierstrass Preparation Theorem. Reference text for self-study or classroom.
Zusatztext
"This is the second, improved edition of the only existing monograph devoted to real-analytic functions, whose theory is rightly considered in the preface 'the wellspring of mathematical analysis.' Organized in six parts, [with] a very rich bibliography and an index, this book is both a map of the subject and its history. Proceeding from the most elementary to the most advanced aspects, it is useful for both beginners and advanced researchers. Names such as Cauchy-Kowalewsky (Kovalevskaya), Weierstrass, Borel, Hadamard, Puiseux, Pringsheim, Besicovitch, Bernstein, Denjoy-Carleman, Paley-Wiener, Whitney, Gevrey, Lojasiewicz, Grauert and many others are involved either by their results or by their concepts."
—MATHEMATICAL REVIEWS
"Bringing together results scattered in various journals or books and presenting them in a clear and systematic manner, the book is of interest first of all for analysts, but also for applied mathematicians and researchers in real algebraic geometry."
—ACTA APPLICANDAE MATHEMATICAE
Bericht
"This is the second, improved edition of the only existing monograph devoted to real-analytic functions, whose theory is rightly considered in the preface 'the wellspring of mathematical analysis.' Organized in six parts, [with] a very rich bibliography and an index, this book is both a map of the subject and its history. Proceeding from the most elementary to the most advanced aspects, it is useful for both beginners and advanced researchers. Names such as Cauchy-Kowalewsky (Kovalevskaya), Weierstrass, Borel, Hadamard, Puiseux, Pringsheim, Besicovitch, Bernstein, Denjoy-Carleman, Paley-Wiener, Whitney, Gevrey, Lojasiewicz, Grauert and many others are involved either by their results or by their concepts."
-MATHEMATICAL REVIEWS
"Bringing together results scattered in various journals or books and presenting them in a clear and systematic manner, the book is of interest first of all for analysts, but also for applied mathematicians and researchers in real algebraic geometry."
-ACTA APPLICANDAE MATHEMATICAE
Produktdetails
| Autoren | Steven Krantz, Steven G Krantz, Steven G. Krantz, Harold R Parks, Harold R. Parks |
| Verlag | Springer, Basel |
| Sprache | Englisch |
| Produktform | Fester Einband |
| Erschienen | 05.08.2002 |
| EAN | 9780817642648 |
| ISBN | 978-0-8176-4264-8 |
| Seiten | 209 |
| Abmessung | 160 mm x 244 mm x 19 mm |
| Gewicht | 534 g |
| Illustration | XIII, 209 p. |
| Serien |
Birkhäuser Advanced Texts Basler Lehrbücher Birkhäuser Advanced Texts Basler Lehrbücher Birkhäuser Advanced Texts Birkhäuser Advanced Texts Basler Lehrbücher Basler Lehrbücher |
| Thema |
Naturwissenschaften, Medizin, Informatik, Technik
> Mathematik
> Analysis
|
Kundenrezensionen
Zu diesem Artikel wurden noch keine Rezensionen verfasst. Schreibe die erste Bewertung und sei anderen Benutzern bei der Kaufentscheidung behilflich.
Schreibe eine Rezension
Top oder Flop? Schreibe deine eigene Rezension.