Fr. 135.00

Semiconcave Functions, Hamilton-Jacobi Equations, and Optimal Control

Englisch · Fester Einband

Versand in der Regel in 6 bis 7 Wochen

Beschreibung

Mehr lesen

Semiconcavity is a natural generalization of concavity that retains most of the good properties known in convex analysis, but arises in a wider range of applications. This text is the first comprehensive exposition of the theory of semiconcave functions, and of the role they play in optimal control and Hamilton-Jacobi equations.
The first part covers the general theory, encompassing all key results and illustrating them with significant examples. The latter part is devoted to applications concerning the Bolza problem in the calculus of variations and optimal exit time problems for nonlinear control systems. The exposition is essentially self-contained since the book includes all prerequisites from convex analysis, nonsmooth analysis, and viscosity solutions.

Inhaltsverzeichnis

A Model Problem.- Semiconcave Functions.- Generalized Gradients and Semiconcavity.- Singularities of Semiconcave Functions.- Hamilton-Jacobi Equations.- Calculus of Variations.- Optimal Control Problems.- Control Problems with Exit Time.

Über den Autor / die Autorin










Prof. Piermarco Cannarsa, Full professor in Mathematical Analysis, Dept. of Mathematics, Università degli Studi di Roma "Tor Vergata", via della Ricerca Scientifica 1, 00133 Roma, Italy and Italian coordinator of the European Research Group (GDRE) on "Control of Partial Differential Equations" (CONEDP) issued by CNRS, INdAM and Universite' de Provence.
Prof. Teresa D'Aprile, Dept. of Mathematics, Università degli Studi di Roma "Tor Vergata", via della Ricerca Scientifica 1, 00133 Roma, Italy

Zusammenfassung

Semiconcavity is a natural generalization of concavity that retains most of the good properties known in convex analysis, but arises in a wider range of applications. This volume details the theory of semiconcave functions, and of the role they play in optimal control and Hamilton–Jacobi equations. The first part covers the general theory, encompassing all key results and illustrating them with significant examples. The latter part is devoted to applications concerning the Bolza problem in the calculus of variations and optimal exit time problems for nonlinear control systems.

Zusatztext

"The main purpose of this book is to provide a systematic study of the notion of semiconcave functions, as well as a presentation of mathematical fields in which this notion plays a fundamental role. Many results are extracted from articles by the authors and their collaborators, with simplified—and often new—presentation and proofs.... One of the most attractive features of this book is the interplay between several fields of mathematical analysis.... Despite the many topics addressed in the book, the required mathematical background for reading it is limited because all the necessary notions are not only recalled, but also carefully explained, and the main results proved.
The book will be found very useful by experts in nonsmooth analysis, nonlinear control theory and PDEs, in particular, as well as by advanced graduate students in this field. They will appreciate the many detailed examples, the clear proofs and the elegant style of presentation, the fairly comprehensive and up-to-date bibliography and the very pertinent historical and bibliographical comments at the end of each chapter."
—Mathematical Reviews

Bericht

"The main purpose of this book is to provide a systematic study of the notion of semiconcave functions, as well as a presentation of mathematical fields in which this notion plays a fundamental role. Many results are extracted from articles by the authors and their collaborators, with simplified-and often new-presentation and proofs.... One of the most attractive features of this book is the interplay between several fields of mathematical analysis.... Despite the many topics addressed in the book, the required mathematical background for reading it is limited because all the necessary notions are not only recalled, but also carefully explained, and the main results proved.
The book will be found very useful by experts in nonsmooth analysis, nonlinear control theory and PDEs, in particular, as well as by advanced graduate students in this field. They will appreciate the many detailed examples, the clear proofs and the elegant style of presentation, the fairly comprehensive and up-to-date bibliography and the very pertinent historical and bibliographical comments at the end of each chapter."
-Mathematical Reviews

Kundenrezensionen

Zu diesem Artikel wurden noch keine Rezensionen verfasst. Schreibe die erste Bewertung und sei anderen Benutzern bei der Kaufentscheidung behilflich.

Schreibe eine Rezension

Top oder Flop? Schreibe deine eigene Rezension.

Für Mitteilungen an CeDe.ch kannst du das Kontaktformular benutzen.

Die mit * markierten Eingabefelder müssen zwingend ausgefüllt werden.

Mit dem Absenden dieses Formulars erklärst du dich mit unseren Datenschutzbestimmungen einverstanden.