Fr. 64.00

Geometric Methods in the Algebraic Theory of Quadratic Forms - Summer School, Lens, 2000

Englisch · Taschenbuch

Versand in der Regel in 6 bis 7 Wochen

Beschreibung

Mehr lesen

The geometric approach to the algebraic theory of quadratic forms is the study of projective quadrics over arbitrary fields. Function fields of quadrics have been central to the proofs of fundamental results since the 1960's. Recently, more refined geometric tools have been brought to bear on this topic, such as Chow groups and motives, and have produced remarkable advances on a number of outstanding problems. Several aspects of these new methods are addressed in this volume, which includes an introduction to motives of quadrics by A. Vishik, with various applications, notably to the splitting patterns of quadratic forms, papers by O. Izhboldin and N. Karpenko on Chow groups of quadrics and their stable birational equivalence, with application to the construction of fields with u-invariant 9, and a contribution in French by B. Kahn which lays out a general framework for the computation of the unramified cohomology groups of quadrics and other cellular varieties.

Inhaltsverzeichnis

Cohomologie non ramifiée des quadriques (B. Kahn).- Motives of Quadrics with Applications to the Theory of Quadratic Forms (A. Vishik).- Motives and Chow Groups of Quadrics with Applications to the u-invariant (N.A. Karpenko after O.T. Izhboldin).- Virtual Pfister Neigbors and First Witt Index (O.T. Izhboldin).- Some New Results Concerning Isotropy of Low-dimensional Forms (O.T. Izhboldin).- Izhboldin's Results on Stably Birational Equivalence of Quadrics (N.A. Karpenko).- My recollections about Oleg Izhboldin (A.S. Merkurjev).

Zusammenfassung

The geometric approach to the algebraic theory of quadratic forms is the study of projective quadrics over arbitrary fields. Function fields of quadrics have been central to the proofs of fundamental results since the 1960's. Recently, more refined geometric tools have been brought to bear on this topic, such as Chow groups and motives, and have produced remarkable advances on a number of outstanding problems. Several aspects of these new methods are addressed in this volume, which includes an introduction to motives of quadrics by A. Vishik, with various applications, notably to the splitting patterns of quadratic forms, papers by O. Izhboldin and N. Karpenko on Chow groups of quadrics and their stable birational equivalence, with application to the construction of fields with u-invariant 9, and a contribution in French by B. Kahn which lays out a general framework for the computation of the unramified cohomology groups of quadrics and other cellular varieties.

Produktdetails

Autoren Oleg Izhboldin, Oleg T Izhboldin, Oleg T. Izhboldin, Brun Kahn, Bruno Kahn, Nikita A e Karpenko, Nikita A. Karpenko, Alexander Vishik
Mitarbeit Jean P. Tignol (Herausgeber), Jean-Pierr Tignol (Herausgeber), Jean-Pierre Tignol (Herausgeber)
Verlag Springer, Berlin
 
Sprache Englisch
Produktform Taschenbuch
Erschienen 02.08.2005
 
EAN 9783540207283
ISBN 978-3-540-20728-3
Seiten 198
Abmessung 156 mm x 238 mm x 12 mm
Gewicht 350 g
Illustration XIV, 198 p.
Serien Lecture Notes in Mathematics
Lecture Notes in Mathematics
Themen Naturwissenschaften, Medizin, Informatik, Technik > Mathematik > Arithmetik, Algebra

Algebra, B, Algebraische Geometrie, Mathematics and Statistics, Algebraic Geometry, Number Theory, Quadratic forms, motives, unramified cohomology

Kundenrezensionen

Zu diesem Artikel wurden noch keine Rezensionen verfasst. Schreibe die erste Bewertung und sei anderen Benutzern bei der Kaufentscheidung behilflich.

Schreibe eine Rezension

Top oder Flop? Schreibe deine eigene Rezension.

Für Mitteilungen an CeDe.ch kannst du das Kontaktformular benutzen.

Die mit * markierten Eingabefelder müssen zwingend ausgefüllt werden.

Mit dem Absenden dieses Formulars erklärst du dich mit unseren Datenschutzbestimmungen einverstanden.