Fr. 266.00

New Trends In Quantum Integrable Systems - Proceedings Of The Infinite Analysis 09

Englisch · Fester Einband

Versand in der Regel in 3 bis 5 Wochen

Beschreibung

Mehr lesen










The present volume is the result of the international workshop on New Trends in Quantum Integrable Systems that was held in Kyoto, Japan, from 27 to 31 July 2009. As a continuation of the RIMS Research Project "Method of Algebraic Analysis in Integrable Systems" in 2004, the workshop's aim was to cover exciting new developments that have emerged during the recent years. Collected here are research articles based on the talks presented at the workshop, including the latest results obtained thereafter. The subjects discussed range across diverse areas such as correlation functions of solvable models, integrable models in quantum field theory, conformal field theory, mathematical aspects of Bethe ansatz, special functions and integrable differential/difference equations, representation theory of infinite dimensional algebras, integrable models and combinatorics. Through these topics, the reader is exposed to the most recent developments in the field of quantum integrable systems and related areas of mathematical physics.

Inhaltsverzeichnis

One Point Functions of Descendants of Sine-Gordon Model; Quantum Spin Chains at Finite Temperatures; Heisenberg Action in the Equivariant K-Theory of Hilbert Schemes; XXZ Scalar Products; Miwa Variables and Discrete KP; Bethe Algebra and Algebra of Functions on Critical Points; Dyson's Constant for the Hypergeometric Kernel; Fay's Trisecant Identity, and Generalized Ultradiscrete Toda Lattice; Differential Equations Compatible with Boundary Rational qKZ Equation; and other papers.

Kundenrezensionen

Zu diesem Artikel wurden noch keine Rezensionen verfasst. Schreibe die erste Bewertung und sei anderen Benutzern bei der Kaufentscheidung behilflich.

Schreibe eine Rezension

Top oder Flop? Schreibe deine eigene Rezension.

Für Mitteilungen an CeDe.ch kannst du das Kontaktformular benutzen.

Die mit * markierten Eingabefelder müssen zwingend ausgefüllt werden.

Mit dem Absenden dieses Formulars erklärst du dich mit unseren Datenschutzbestimmungen einverstanden.