Fr. 235.20

A Set of Examples of Global and Discrete Optimization - Applications of Bayesian Heuristic Approach

Englisch · Fester Einband

Versand in der Regel in 3 bis 5 Wochen (Titel wird speziell besorgt)

Beschreibung

Mehr lesen

This book shows how the Bayesian Approach (BA) improves well known heuristics by randomizing and optimizing their parameters. That is the Bayesian Heuristic Approach (BHA). The ten in-depth examples are designed to teach Operations Research using Internet. Each example is a simple representation of some impor tant family of real-life problems. The accompanying software can be run by remote Internet users. The supporting web-sites include software for Java, C++, and other lan guages. A theoretical setting is described in which one can discuss a Bayesian adaptive choice of heuristics for discrete and global optimization prob lems. The techniques are evaluated in the spirit of the average rather than the worst case analysis. In this context, "heuristics" are understood to be an expert opinion defining how to solve a family of problems of dis crete or global optimization. The term "Bayesian Heuristic Approach" means that one defines a set of heuristics and fixes some prior distribu tion on the results obtained. By applying BHA one is looking for the heuristic that reduces the average deviation from the global optimum. The theoretical discussions serve as an introduction to examples that are the main part of the book. All the examples are interconnected. Dif ferent examples illustrate different points of the general subject. How ever, one can consider each example separately, too.

Inhaltsverzeichnis

Preface. Part I: About the Bayesian Approach. 1. General Ideas. 2. Explaining BHA by Knapsack Example. Part II: Software for Global Optimization. 3. Introduction. 4. Fortran. 5. Turbo C. 6. C++. 7. Java 1.0. 8. Java 1.2. Part III: Examples of Models. 9. Nash Equilibrium. 10. Walras Equilibrium. 11. Inspection Model. 12. Differential Game. 13. Investment Problem. 14. Exchange Rate Prediction. 15. Call Centers. 16. Optimal Scheduling. 17. Sequential Decisions. References. Index.

Zusammenfassung

This book shows how the Bayesian Approach (BA) improves well known heuristics by randomizing and optimizing their parameters. A theoretical setting is described in which one can discuss a Bayesian adaptive choice of heuristics for discrete and global optimization prob lems.

Produktdetails

Autoren J. Mockus, Jonas Mockus
Verlag Springer, Berlin
 
Sprache Englisch
Produktform Fester Einband
Erschienen 24.02.2011
 
EAN 9780792363590
ISBN 978-0-7923-6359-0
Seiten 322
Gewicht 671 g
Illustration XIV, 322 p.
Serien Applied Optimization
Applied Optimization
Themen Kinder- und Jugendbücher > Jugendbücher ab 12 Jahre
Naturwissenschaften, Medizin, Informatik, Technik > Mathematik > Sonstiges
Sozialwissenschaften, Recht,Wirtschaft > Wirtschaft > Management

Kundenrezensionen

Zu diesem Artikel wurden noch keine Rezensionen verfasst. Schreibe die erste Bewertung und sei anderen Benutzern bei der Kaufentscheidung behilflich.

Schreibe eine Rezension

Top oder Flop? Schreibe deine eigene Rezension.

Für Mitteilungen an CeDe.ch kannst du das Kontaktformular benutzen.

Die mit * markierten Eingabefelder müssen zwingend ausgefüllt werden.

Mit dem Absenden dieses Formulars erklärst du dich mit unseren Datenschutzbestimmungen einverstanden.