Mehr lesen
Informationen zum Autor Brian Wardle is the author of Principles and Applications of Photochemistry, published by Wiley. Klappentext Based on a course given by the author, this text provides an introduction to the principles and applications of photochemistry. Covering both principles and applications, the 12 chapters are organised in the following way:* General introduction to the concepts of light and matter and their interaction resulting in electronically excited states* Processes involving physical deactivation of the electronically excited states* An overview of the chemical properties of excited states* Photochemical reactions of Alkenes and Carbonyl Compounds* Techniques used in photochemical reactions* The outstanding progress that has been made in recent yearsThroughout Principles and Applications of Photochemistry, the reader's understanding is enhanced with learning objectives, worked examples and chapter summaries. Written at a level suitable for undergraduates, this book is ideal for students in chemistry, physics and related topics, as well as serving more experienced researchers needing an introduction to this subject area. Zusammenfassung Die moderne Photochemie ist ein interdisziplinäres Wissensgebiet mit Beiträgen aus der (organischen und anorganischen) Strukturchemie ebenso wie aus der Physik der Wechselwirkung zwischen Strahlung und Materie. Ihre Anwendungsspektrum erstreckt sich von der Medizin und Biochemie bis zur Atmosphärenforschung. Dem trägt der vorliegende Band Rechnung: Theoretische Grundlagen werden erklärt und anhand vieler Beispiele und Aufgaben aus verschiedenen Fachrichtungen geübt. Zu den besprochenen aktuellen Anwendungen gehören photochemische molekulare Maschinen, die photodynamische Lasertherapie, photochromatische Abbildungsverfahren, Photostabilisatoren und andere spannende Themen. Inhaltsverzeichnis Preface xiii 1 Introductory Concepts 1 Aims and Objectives 1 1.1 The Quantum Nature of Matter and Light 2 1.2 Modelling Atoms: Atomic Orbitals 6 1.3 Modelling Molecules: Molecular Orbitals 9 1.4 Modelling Molecules: Electronic States 13 1.5 Light Sources Used in Photochemistry 16 1.6 Efficiency of Photochemical Processes: Quantum Yield 25 2 Light Absorption and Electronically-excited States 29 Aims and Objectives 29 2.1 Introduction 29 2.2 The Beer-Lambert Law 30 2.3 The Physical Basis of Light Absorption by Molecules 32 2.4 Absorption of Light by Organic Molecules 35 2.5 Linearly-conjugated Molecules 39 2.6 Some Selection Rules 42 2.7 Absorption of Light by Inorganic Complexes 43 3 The Physical Deactivation of Excited States 47 Aims and Objectives 47 3.1 Introduction 47 3.2 Jablonski Diagrams 49 3.3 Excited-state Lifetimes 53 4 Radiative Processes of Excited States 59 Aims and Objectives 59 4.1 Introduction 60 4.2 Fluorescence and Fluorescence Spectra 61 4.3 An Exception to Kasha's Rule 63 4.4 Fluorescence Quantum Yield 64 4.5 Factors Contributing to Fluorescence Behaviour 65 4.6 Molecular Fluorescence in Analytical Chemistry 67 4.7 Phosphorescence 70 4.8 Delayed Fluorescence 73 4.9 Lanthanide Luminescence 74 5 Intramolecular Radiationless Transitions of Excited States 77 Aims and Objectives 77 5.1 Introduction 77 5.2 The Energy Gap Law 79 5.3 The Franck-Condon Factor 79 5.4 Heavy Atom Effects on Intersystem Crossing 82 5.5 El-Sayed's Selection Rules for Intersystem Crosssing 83 6 Intermolecular Physical Processes of Excited States 87 Aims and Objectives 87 6.1 Quenching Processes 88 6.2 Excimers 90 6.3 Exciplexes 93 6.4 Intermolecular Electronic Energy Transfer 96 6.5 The Trivial or Radiative Mec...