Fr. 105.60

Outer Billiards on Kites

Englisch · Taschenbuch

Versand in der Regel in 1 bis 3 Wochen (kurzfristig nicht lieferbar)

Beschreibung

Mehr lesen

Zusatztext "This research is an exemplary sample of experimental mathematics." ---Serge L. Tabachnikov! Mathematical Review Informationen zum Autor Richard Evan Schwartz is professor of mathematics at Brown University and the author of Spherical CR Geometry and Dehn Surgery (Princeton). Klappentext Outer billiards is a basic dynamical system defined relative to a convex shape in the plane. B. H. Neumann introduced this system in the 1950s, and J. Moser popularized it as a toy model for celestial mechanics. All along, the so-called Moser-Neumann question has been one of the central problems in the field. This question asks whether or not one can have an outer billiards system with an unbounded orbit. The Moser-Neumann question is an idealized version of the question of whether, because of small disturbances in its orbit, the Earth can break out of its orbit and fly away from the Sun. In Outer Billiards on Kites, Richard Schwartz presents his affirmative solution to the Moser-Neumann problem. He shows that an outer billiards system can have an unbounded orbit when defined relative to any irrational kite. A kite is a quadrilateral having a diagonal that is a line of bilateral symmetry. The kite is irrational if the other diagonal divides the quadrilateral into two triangles whose areas are not rationally related. In addition to solving the basic problem, Schwartz relates outer billiards on kites to such topics as Diophantine approximation, the modular group, self-similar sets, polytope exchange maps, profinite completions of the integers, and solenoids--connections that together allow for a fairly complete analysis of the dynamical system. Zusammenfassung Outer billiards is a basic dynamical system defined relative to a convex shape in the plane. B H Neumann introduced this system in the 1950s, and J Moser popularized it as a toy model for celestial mechanics. All along, the Moser-Neumann question has been one of the central problems in the field. This title offers solution to the problem. Inhaltsverzeichnis 9707052 ...

Produktdetails

Autoren Richard Schwartz, Richard Evan Schwartz, Schwartz Richard Evan
Mitarbeit Phillip Griffiths (Herausgeber), John N. Mather (Herausgeber), Elias Stein (Herausgeber)
Verlag Princeton University Press
 
Sprache Englisch
Produktform Taschenbuch
Erschienen 25.10.2009
 
EAN 9780691142494
ISBN 978-0-691-14249-4
Seiten 320
Serien Princeton University Press
Annals of Mathematics Studies
Annals of Mathematics Studies
Themen Naturwissenschaften, Medizin, Informatik, Technik > Mathematik > Geometrie

MATHEMATICS / Geometry / General, MATHEMATICS / Topology, geometry, Topology

Kundenrezensionen

Zu diesem Artikel wurden noch keine Rezensionen verfasst. Schreibe die erste Bewertung und sei anderen Benutzern bei der Kaufentscheidung behilflich.

Schreibe eine Rezension

Top oder Flop? Schreibe deine eigene Rezension.

Für Mitteilungen an CeDe.ch kannst du das Kontaktformular benutzen.

Die mit * markierten Eingabefelder müssen zwingend ausgefüllt werden.

Mit dem Absenden dieses Formulars erklärst du dich mit unseren Datenschutzbestimmungen einverstanden.