Fr. 237.00

Charged Semiconductor Defects - Structure, Thermodynamics and Diffusion

Englisch · Fester Einband

Versand in der Regel in 6 bis 7 Wochen

Beschreibung

Mehr lesen

Defects in semiconductors have been studied for many years, in many cases with a view toward controlling their behaviour through various forms of "defect engineering". For example, in the bulk, charging significantly affects the total concentration of defects that are available to mediate phenomena such as solid-state diffusion. Surface defects play an important role in mediating surface mass transport during high temperature processing steps such as epitaxial film deposition, diffusional smoothing in reflow, and nanostructure formation in memory device fabrication. "Charged Defects in Semiconductors" details the current state of knowledge regarding the properties of the ionized defects that can affect the behaviour of advanced transistors, photo-active devices, catalysts, and sensors. Features: group IV, III-V, and oxide semiconductors; intrinsic and extrinsic defects; and, point defects, as well as defect pairs, complexes and clusters.

Inhaltsverzeichnis

Fundamentals of Defect Ionization and Transport.- Experimental and Computational Characterization.- Trends in Charged Defect Behavior.- Intrinsic Defects: Structure.- Intrinsic Defects: Ionization Thermodynamics.- Intrinsic Defects: Diffusion.- Extrinsic Defects.

Über den Autor / die Autorin

Edmund Seebauer is currently Head of Chemical and Biomolecular Engineering at the University of Illinois at Urbana-Champaign. Since 1987 he has been the Chair or co-Chair of numerous sessions on surface chemisty, materials chemistry and microelectronics fabrication for national meetings of AIChE, AVS and MRS.

Meredith Kratzer is working towards a PhD in Chemical & Biomolecular Engineering at the University of Illinois at Urbana-Champaign. She received her B.S. (cum laude) in Chemical Engineering from Cornell University.

Zusammenfassung

Defects in semiconductors have been studied for many years, in many cases with a view toward controlling their behaviour through various forms of “defect engineering”. For example, in the bulk, charging significantly affects the total concentration of defects that are available to mediate phenomena such as solid-state diffusion. Surface defects play an important role in mediating surface mass transport during high temperature processing steps such as epitaxial film deposition, diffusional smoothing in reflow, and nanostructure formation in memory device fabrication. “Charged Defects in Semiconductors” details the current state of knowledge regarding the properties of the ionized defects that can affect the behaviour of advanced transistors, photo-active devices, catalysts, and sensors. Features: group IV, III-V, and oxide semiconductors; intrinsic and extrinsic defects; and, point defects, as well as defect pairs, complexes and clusters.

Kundenrezensionen

Zu diesem Artikel wurden noch keine Rezensionen verfasst. Schreibe die erste Bewertung und sei anderen Benutzern bei der Kaufentscheidung behilflich.

Schreibe eine Rezension

Top oder Flop? Schreibe deine eigene Rezension.

Für Mitteilungen an CeDe.ch kannst du das Kontaktformular benutzen.

Die mit * markierten Eingabefelder müssen zwingend ausgefüllt werden.

Mit dem Absenden dieses Formulars erklärst du dich mit unseren Datenschutzbestimmungen einverstanden.