Fr. 50.90

Arithmetical Investigations - Representation Theory, Orthogonal Polynomials, and Quantum Interpolations

Englisch · Taschenbuch

Versand in der Regel in 6 bis 7 Wochen

Beschreibung

Mehr lesen

In this volume the author further develops his philosophy of quantum interpolation between the real numbers and the p-adic numbers. The p-adic numbers contain the p-adic integers Zp which are the inverse limit of the finite rings Z/pn. This gives rise to a tree, and probability measures w on Zp correspond to Markov chains on this tree. From the tree structure one obtains special basis for the Hilbert space L2(Zp,w). The real analogue of the p-adic integers is the interval [-1,1], and a probability measure w on it gives rise to a special basis for L2([-1,1],w) - the orthogonal polynomials, and to a Markov chain on "finite approximations" of [-1,1]. For special (gamma and beta) measures there is a "quantum" or "q-analogue" Markov chain, and a special basis, that within certain limits yield the real and the p-adic theories. This idea can be generalized variously. In representation theory, it is the quantum general linear group GLn(q)that interpolates between the p-adic group GLn(Zp), and between its real (and complex) analogue -the orthogonal On (and unitary Un )groups. There is a similar quantum interpolation between the real and p-adic Fourier transform and between the real and p-adic (local unramified part of) Tate thesis, and Weil explicit sums.

Inhaltsverzeichnis

Introduction: Motivations from Geometry.- Gamma and Beta Measures.- Markov Chains.- Real Beta Chain and q-Interpolation.- Ladder Structure.- q-Interpolation of Local Tate Thesis.- Pure Basis and Semi-Group.- Higher Dimensional Theory.- Real Grassmann Manifold.- p-Adic Grassmann Manifold.- q-Grassmann Manifold.- Quantum Group Uq(su(1, 1)) and the q-Hahn Basis.

Zusammenfassung


In this volume the author further develops his philosophy of quantum interpolation between the real numbers and the p-adic numbers. The p-adic numbers contain the p-adic integers Z
p
which are the inverse limit of the finite rings Z/p
n
. This gives rise to a tree, and probability measures w on Z
p
correspond to Markov chains on this tree. From the tree structure one obtains special basis for the Hilbert space L
2
(Z
p
,w). The real analogue of the p-adic integers is the interval [-1,1], and a probability measure w on it gives rise to a special basis for L
2
([-1,1],w) - the orthogonal polynomials, and to a Markov chain on "finite approximations" of [-1,1]. For special (gamma and beta) measures there is a "quantum" or "q-analogue" Markov chain, and a special basis, that within certain limits yield the real and the p-adic theories. This idea can be generalized variously. In representation theory, it is the quantum general linear group GL
n
(q)that interpolates between the p-adic group GL
n
(Z
p
), and between its real (and complex) analogue -the orthogonal O
n
(and unitary U
n
)groups. There is a similar quantum interpolation between the real and p-adic Fourier transform and between the real and p-adic (local unramified part of) Tate thesis, and Weil explicit sums.

Produktdetails

Autoren M. J. Shai Haran, Shai M J Haran, Shai M. J. Haran, Shai M.J. Haran
Verlag Springer, Berlin
 
Sprache Englisch
Produktform Taschenbuch
Erschienen 19.02.2009
 
EAN 9783540783787
ISBN 978-3-540-78378-7
Seiten 222
Abmessung 156 mm x 14 mm x 236 mm
Gewicht 380 g
Illustration XII, 222 p. 23 illus.
Serien Lecture Notes in Mathematics
Lecture Notes in Mathematics
Themen Naturwissenschaften, Medizin, Informatik, Technik > Mathematik > Arithmetik, Algebra

B, arithmetic, Dex, Mathematics and Statistics, probability, Manifold, Number Theory, finite, Markov chains, representation theory, Fourier transform, Quantum groups, Markov chain, Approximation, probability measure, special funtions

Kundenrezensionen

Zu diesem Artikel wurden noch keine Rezensionen verfasst. Schreibe die erste Bewertung und sei anderen Benutzern bei der Kaufentscheidung behilflich.

Schreibe eine Rezension

Top oder Flop? Schreibe deine eigene Rezension.

Für Mitteilungen an CeDe.ch kannst du das Kontaktformular benutzen.

Die mit * markierten Eingabefelder müssen zwingend ausgefüllt werden.

Mit dem Absenden dieses Formulars erklärst du dich mit unseren Datenschutzbestimmungen einverstanden.