Fr. 70.00

Computational Learning Theory - 15th Annual Conference on Computational Learning Theory, COLT 2002, Sydney, Australia, July 8-10, 2002. Proceedings

Englisch · Taschenbuch

Versand in der Regel in 6 bis 7 Wochen

Beschreibung

Mehr lesen

ThisvolumecontainspaperspresentedattheFifteenthAnnualConferenceon ComputationalLearningTheory(COLT2002)heldonthemaincampusofthe UniversityofNewSouthWalesinSydney,AustraliafromJuly8to10,2002. Naturally,thesearepapersinthe?eldofcomputationallearningtheory,a- search?elddevotedtostudyingthedesignandanalysisofalgorithmsformaking predictionsaboutthefuturebasedonpastexperiences,withanemphasisonr- orousmathematicalanalysis. COLT2002wasco-locatedwiththeNineteenthInternationalConferenceon MachineLearning(ICML2002)andwiththeTwelfthInternationalConference onInductiveLogicProgramming(ILP2002). NotethatCOLT2002wasthe?rstconferencetotakeplaceafterthefull mergeroftheAnnualConferenceonComputationalLearningTheorywiththe EuropeanConferenceonComputationalLearningTheory. (In2001ajointc- ferenceconsistingofthe5thEuropeanConferenceonComputationalLearning Theoryandthe14thAnnualConferenceonComputationalLearningTheory washeld;thelastindependentEuropeanConferenceonComputationalLea- ingTheorywasheldin1999. ) ThetechnicalprogramofCOLT2002contained26papersselectedfrom 55submissions. Inaddition,ChristosPapadimitriou(UniversityofCaliforniaat Berkeley)wasinvitedtogiveakeynotelectureandtocontributeanabstractof hislecturetotheseproceedings. TheMarkFulkAwardispresentedannuallyforthebestpapercoauthored byastudent. Thisyear sawardwaswonbySandraZillesforthepaper Merging UniformInductiveLearners. April2002 JyrkiKivinen RobertH. Sloan Thanks and Acknowledgments Wegratefullythankalltheindividualsandorganizationsresponsibleforthe successoftheconference. ProgramCommittee Weespeciallywanttothanktheprogramcommittee:DanaAngluin(Yale), JavedAslam(Dartmouth),PeterBartlett(BIOwulfTechnologies),ShaiBen- David(Technion),JohnCase(Univ. ofDelaware),PeterGru nwald(CWI),Ralf Herbrich(MicrosoftResearch),MarkHerbster(UniversityCollegeLondon), G aborLugosi(PompeuFabraUniversity),RonMeir(Technion),ShaharMend- son(AustralianNationalUniv. ),MichaelSchmitt(Ruhr-Universit atBochum), RoccoServedio(Harvard),andSantoshVempala(MIT). WealsoacknowledgethecreatorsoftheCyberChairsoftwareformakinga softwarepackagethathelpedthecommitteedoitswork. Local Arrangements, Co-located Conferences Support SpecialthanksgotoourconferencechairArunSharmaandlocalarrangements chairEricMartin(bothatUniv. ofNewSouthWales)forsettingupCOLT2002 inSydney. RochelleMcDonaldandSueLewisprovidedadministrativesupport. ClaudeSammutinhisroleasconferencechairofICMLandprogramco-chair ofILPensuredsmoothcoordinationwiththetwoco-locatedconferences. COLT Community ForkeepingtheCOLTseriesgoing,wethanktheCOLTsteeringcommittee, andespeciallyChairJohnShawe-TaylorandTreasurerJohnCaseforalltheir hardwork. WealsothankStephenKwekformaintainingtheCOLTwebsiteat learningtheory. org. Sponsoring Institution SchoolofComputerScienceandEngineering,UniversityofNewSouthWales, Australia VIII Thanks and Acknowledgments Referees PeterAuer LisaHellerstein AlainPajor AndrewBarto DanielHerrmann GunnarR atsch StephaneBoucheron ColindelaHiguera RobertSchapire OlivierBousquet SeanHolden JohnShawe-Taylor Nicol`oCesa-Bianchi MarcusHutter TakeshiShinohara TapioElomaa SanjayJain DavidShmoys RanEl-Yaniv YuriKalnishkan YoramSinger AllanErskine MakotoKanazawa CarlSmith HenningFernau SatoshiKobayashi FrankStephan J urgenForster VladimirKoltchinskii Gy orgyTur an DeanFoster MattiKa ariai nen PaulVitan yi ClaudioGentile WeeSunLee ManfredWarmuth JudyGoldsmith ShieMannor JonA. Wellner ThoreGraepel RyanO Donnell RobertC. Williamson Table of Contents Statistical Learning Theory AgnosticLearningNonconvexFunctionClasses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Shahar Mendelson andRobertC. Williamson Entropy,CombinatorialDimensionsandRandomAverages. . . . . . . . . . . . . . . . . 14 Shahar Mendelson andRoman Vershynin GeometricParametersofKernelMachines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Shahar Mendelson LocalizedRademacherComplexities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 PeterL.

Inhaltsverzeichnis

Statistical Learning Theory.- Agnostic Learning Nonconvex Function Classes.- Entropy, Combinatorial Dimensions and Random Averages.- Geometric Parameters of Kernel Machines.- Localized Rademacher Complexities.- Some Local Measures of Complexity of Convex Hulls and Generalization Bounds.- Online Learning.- Path Kernels and Multiplicative Updates.- Predictive Complexity and Information.- Mixability and the Existence of Weak Complexities.- A Second-Order Perceptron Algorithm.- Tracking Linear-Threshold Concepts with Winnow.- Inductive Inference.- Learning Tree Languages from Text.- Polynomial Time Inductive Inference of Ordered Tree Patterns with Internal Structured Variables from Positive Data.- Inferring Deterministic Linear Languages.- Merging Uniform Inductive Learners.- The Speed Prior: A New Simplicity Measure Yielding Near-Optimal Computable Predictions.- PAC Learning.- New Lower Bounds for Statistical Query Learning.- Exploring Learnability between Exact and PAC.- PAC Bounds for Multi-armed Bandit and Markov Decision Processes.- Bounds for the Minimum Disagreement Problem with Applications to Learning Theory.- On the Proper Learning of Axis Parallel Concepts.- Boosting.- A Consistent Strategy for Boosting Algorithms.- The Consistency of Greedy Algorithms for Classification.- Maximizing the Margin with Boosting.- Other Learning Paradigms.- Performance Guarantees for Hierarchical Clustering.- Self-Optimizing and Pareto-Optimal Policies in General Environments Based on Bayes-Mixtures.- Prediction and Dimension.- Invited Talk.- Learning the Internet.

Kundenrezensionen

Zu diesem Artikel wurden noch keine Rezensionen verfasst. Schreibe die erste Bewertung und sei anderen Benutzern bei der Kaufentscheidung behilflich.

Schreibe eine Rezension

Top oder Flop? Schreibe deine eigene Rezension.

Für Mitteilungen an CeDe.ch kannst du das Kontaktformular benutzen.

Die mit * markierten Eingabefelder müssen zwingend ausgefüllt werden.

Mit dem Absenden dieses Formulars erklärst du dich mit unseren Datenschutzbestimmungen einverstanden.