Fr. 77.00

Representation Theory and Complex Analysis - Lectures given at the C.I.M.E. Summer School held in Venice, Italy, June 10-17, 2004

Englisch · Taschenbuch

Versand in der Regel in 6 bis 7 Wochen

Beschreibung

Mehr lesen

Six leading experts lecture on a wide spectrum of recent results on the subject of the title, providing both a solid reference and deep insights on current research activity. Michael Cowling presents a survey of various interactions between representation theory and harmonic analysis on semisimple groups and symmetric spaces. Alain Valette recalls the concept of amenability and shows how it is used in the proof of rigidity results for lattices of semisimple Lie groups. Edward Frenkel describes the geometric Langlands correspondence for complex algebraic curves, concentrating on the ramified case where a finite number of regular singular points is allowed. Masaki Kashiwara studies the relationship between the representation theory of real semisimple Lie groups and the geometry of the flag manifolds associated with the corresponding complex algebraic groups. David Vogan deals with the problem of getting unitary representations out of those arising from complex analysis, such as minimal globalizations realized on Dolbeault cohomology with compact support. Nolan Wallach illustrates how representation theory is related to quantum computing, focusing on the study of qubit entanglement.

Inhaltsverzeichnis

Applications of Representation Theory to Harmonic Analysis of Lie Groups (and Vice Versa).- Ramifications of the Geometric Langlands Program.- Equivariant Derived Category and Representation of Real Semisimple Lie Groups.- Amenability and Margulis Super-Rigidity.- Unitary Representations and Complex Analysis.- Quantum Computing and Entanglement for Mathematicians.

Zusammenfassung

Six leading experts lecture on a wide spectrum of recent results on the subject of the title, providing both a solid reference and deep insights on current research activity. Michael Cowling presents a survey of various interactions between representation theory and harmonic analysis on semisimple groups and symmetric spaces. Alain Valette recalls the concept of amenability and shows how it is used in the proof of rigidity results for lattices of semisimple Lie groups. Edward Frenkel describes the geometric Langlands correspondence for complex algebraic curves, concentrating on the ramified case where a finite number of regular singular points is allowed. Masaki Kashiwara studies the relationship between the representation theory of real semisimple Lie groups and the geometry of the flag manifolds associated with the corresponding complex algebraic groups. David Vogan deals with the problem of getting unitary representations out of those arising from complex analysis, such as minimal globalizations realized on Dolbeault cohomology with compact support. Nolan Wallach illustrates how representation theory is related to quantum computing, focusing on the study of qubit entanglement.

Produktdetails

Autoren Michae Cowling, Michael Cowling, Edwar Frenkel, Edward Frenkel, Masaki Kashiwara, Alain Valette, David A. Vogan, Nolan R. Wallach
Mitarbeit Massimo A Picardello (Herausgeber), Enrico Casadio Tarabusi (Herausgeber), Enrico (Hrsg.) Casadio Tarabusi (Herausgeber), Andre D'Agnolo (Herausgeber), Andrea D'Agnolo (Herausgeber), Andrea (Hrsg.) D'Agnolo (Herausgeber), Massimo Picardello (Herausgeber), Massimo (Hrsg.) Picardello (Herausgeber), Massimo A. Picardello (Herausgeber), Enrico Casadio Tarabusi (Herausgeber)
Verlag Springer, Berlin
 
Sprache Englisch
Produktform Taschenbuch
Erschienen 01.01.2008
 
EAN 9783540768913
ISBN 978-3-540-76891-3
Seiten 388
Illustration 1 SW-Abb., 1 SW-Zeichn.
Serien Lecture Notes in Mathematics
Lecture Notes in Mathematics / Fondazione C.I.M.E., Firenze
C.I.M.E. Foundation Subseries
(1931) Lecture Notes in Mathematics
Fondazione C.I.M.E., Firenze
Lecture Notes in Mathematics
C.I.M.E. Foundation Subseries
Themen Naturwissenschaften, Medizin, Informatik, Technik > Mathematik > Analysis

Algebra, C, Mathematics and Statistics, Functional Analysis, Numerical analysis, Topological Groups, Lie Groups, Rings (Algebra), Manifolds (Mathematics), Topological groups, Non-associative Rings and Algebras, Lie groups, Topological Groups and Lie Groups, Nonassociative rings, Complex analysis, complex variables, Abstract Harmonic Analysis, Harmonic analysis, Groups & group theory, Functions of complex variables, Global analysis (Mathematics), Global Analysis and Analysis on Manifolds, Several Complex Variables and Analytic Spaces

Kundenrezensionen

Zu diesem Artikel wurden noch keine Rezensionen verfasst. Schreibe die erste Bewertung und sei anderen Benutzern bei der Kaufentscheidung behilflich.

Schreibe eine Rezension

Top oder Flop? Schreibe deine eigene Rezension.

Für Mitteilungen an CeDe.ch kannst du das Kontaktformular benutzen.

Die mit * markierten Eingabefelder müssen zwingend ausgefüllt werden.

Mit dem Absenden dieses Formulars erklärst du dich mit unseren Datenschutzbestimmungen einverstanden.