Fr. 189.00

Algebra - Representation Theory - Proceedings of the NATO Advanced Study Institute on Algebra Representation Theory, Constanta, Romania, 2 12 August 2000

Englisch · Fester Einband

Versand in der Regel in 6 bis 7 Wochen

Beschreibung

Mehr lesen

Over the last three decades representation theory of groups, Lie algebras and associative algebras has undergone a rapid development through the powerful tool of almost split sequences and the Auslander-Reiten quiver. Further insight into the homology of finite groups has illuminated their representation theory. The study of Hopf algebras and non-commutative geometry is another new branch of representation theory which pushes the classical theory further. All this can only be seen in connection with an understanding of the structure of special classes of rings. The aim of this book is to introduce the reader to some modern developments in:

  1. Lie algebras, quantum groups, Hopf algebras and algebraic groups;
  2. non-commutative algebraic geometry;
  3. representation theory of finite groups and cohomology;
  4. the structure of special classes of rings.

Inhaltsverzeichnis

Tilting modules for algebraic and quantum groups.- Connections between group representations and cohomology.- Invariant theory of algebra representations.- Representation Theory of Orders.- On some problems in Pi-theory in characteristic p.- Blocks of category O, double centralizer properties, and Enright's completions.- The Gelfand-Kirillov dimensions of Algebras arising from Representation Theory.- The normalizer of a finite group in its integral group ring and ?ech cohomology.- Representation Theory of Semisimple Hopf Algebras.- Semigroup cohomology and applications.- In Search For Noetherian Algebras.- Cohen-Macaulay representation.- Hereditary abelian categories and almost split sequences.- The abelian defect group conjecture: some recent progress.- 2-dimensional Orders and integral Hecke orders.- Invertible ideals and non-commutative generalizations of regular rings.- Langlands'philosophy and Koszul duality.- Noncommutative projective geometry.- Braid groups as self-equivalencesof derived categories.- Modules with good filtration and invariant theory.

Zusammenfassung

Over the last three decades representation theory of groups, Lie algebras and associative algebras has undergone a rapid development through the powerful tool of almost split sequences and the Auslander-Reiten quiver. Further insight into the homology of finite groups has illuminated their representation theory. The study of Hopf algebras and non-commutative geometry is another new branch of representation theory which pushes the classical theory further. All this can only be seen in connection with an understanding of the structure of special classes of rings. The aim of this book is to introduce the reader to some modern developments in:

  1. Lie algebras, quantum groups, Hopf algebras and algebraic groups;
  2. non-commutative algebraic geometry;
  3. representation theory of finite groups and cohomology;
  4. the structure of special classes of rings.

Produktdetails

Mitarbeit Klaus W. Roggenkamp (Herausgeber), Stefanescu (Herausgeber), Stefanescu (Herausgeber), Mirela Stefanescu (Herausgeber), Klau W Roggenkamp (Herausgeber), Klaus W Roggenkamp (Herausgeber)
Verlag Springer Netherlands
 
Sprache Englisch
Produktform Fester Einband
Erschienen 01.07.2009
 
EAN 9780792371137
ISBN 978-0-7923-7113-7
Seiten 460
Gewicht 848 g
Illustration XIII, 460 p.
Serien NATO Science Series II Mathematics, Physics and Chemistry
Nato Science Series II:
NATO Science Series II: Mathematics, Physics and Chemistry
NATO Science Series II
Themen Naturwissenschaften, Medizin, Informatik, Technik > Mathematik > Arithmetik, Algebra

B, Chemistry and Materials Science, Associative Rings and Algebras, Associative algebras

Kundenrezensionen

Zu diesem Artikel wurden noch keine Rezensionen verfasst. Schreibe die erste Bewertung und sei anderen Benutzern bei der Kaufentscheidung behilflich.

Schreibe eine Rezension

Top oder Flop? Schreibe deine eigene Rezension.

Für Mitteilungen an CeDe.ch kannst du das Kontaktformular benutzen.

Die mit * markierten Eingabefelder müssen zwingend ausgefüllt werden.

Mit dem Absenden dieses Formulars erklärst du dich mit unseren Datenschutzbestimmungen einverstanden.