Fr. 90.00

Theorems on Regularity and Singularity of Energy Minimizing Maps

Englisch · Taschenbuch

Versand in der Regel in 1 bis 2 Wochen (Titel wird auf Bestellung gedruckt)

Beschreibung

Mehr lesen

The aim of these lecture notes is to give an essentially self-contained introduction to the basic regularity theory for energy minimizing maps, including recent developments concerning the structure of the singular set and asymptotics on approach to the singular set. Specialized knowledge in partial differential equations or the geometric calculus of variations is not required; a good general background in mathematical analysis would be adequate preparation.

Inhaltsverzeichnis

1 Analytic Preliminaries.- 1.1 Hölder Continuity.- 1.2 Smoothing.- 1.3 Functions with L2 Gradient.- 1.4 Harmonic Functions.- 1.5 Weakly Harmonic Functions.- 1.6 Harmonic Approximation Lemma.- 1.7 Elliptic regularity.- 1.8 A Technical Regularity Lemma.- 2 Regularity Theory for Harmonic Maps.- 2.1 Definition of Energy Minimizing Maps.- 2.2 The Variational Equations.- 2.3 The ?-Regularity Theorem.- 2.4 The Monotonicity Formula.- 2.5 The Density Function.- 2.6 A Lemma of Luckhaus.- 2.7 Corollaries of Luckhaus' Lemma.- 2.8 Proof of the Reverse Poincaré Inequality.- 2.9 The Compactness Theorem.- 2.10 Corollaries of the ?-Regularity Theorem.- 2.11 Remark on Upper Semicontinuity of the Density ?u(y).- 2.12 Appendix to Chapter 2.- 3 Approximation Properties of the Singular Set.- 3.1 Definition of Tangent Map.- 3.2 Properties of Tangent Maps.- 3.3 Properties of Homogeneous Degree Zero Minimizers.- 3.4 Further Properties of sing u.- 3.5 Definition of Top-dimensional Part of the Singular Set.- 3.6 Homogeneous Degree Zero ? with dim S(?) = n - 3.- 3.7 The Geometric Picture Near Points of sing*u.- 3.8 Consequences of Uniqueness of Tangent Maps.- 3.9 Approximation properties of subsets of ?n.- 3.10 Uniqueness of Tangent maps with isolated singularities.- 3.11 Functionals on vector bundles.- 3.12 The Liapunov-Schmidt Reduction.- 3.13 The ?ojasiewicz Inequality for ?.- 3.14 ?ojasiewicz for the Energy functional on Sn-1.- 3.15 Proof of Theorem 1 of Section 3.10.- 3.16 Appendix to Chapter 3.- 4 Rectifiability of the Singular Set.- 4.1 Statement of Main Theorems.- 4.2 A general rectifiability lemma.- 4.3 Gap Measures on Subsets of ?n.- 4.4 Energy Estimates.- 4.5 L2 estimates.- 4.6 The deviation function ?.- 4.7 Proof of Theorems 1, 2 of Section 4.1.- 4.8 The case when ?has arbitrary Riemannian metric.

Produktdetails

Autoren Leon Simon
Verlag Springer Basel AG
 
Sprache Englisch
Produktform Taschenbuch
Erschienen 01.01.1996
 
EAN 9783764353971
ISBN 978-3-7643-5397-1
Seiten 164
Abmessung 181 mm x 257 mm x 10 mm
Gewicht 322 g
Serien Lecture Notes in Mathematics
Lectures in Mathematics
Lectures in Mathematics. ETH Zürich
Lectures in Mathematics
Lectures in Mathematics. ETH Zürich
Thema Naturwissenschaften, Medizin, Informatik, Technik > Mathematik > Analysis

Kundenrezensionen

Zu diesem Artikel wurden noch keine Rezensionen verfasst. Schreibe die erste Bewertung und sei anderen Benutzern bei der Kaufentscheidung behilflich.

Schreibe eine Rezension

Top oder Flop? Schreibe deine eigene Rezension.

Für Mitteilungen an CeDe.ch kannst du das Kontaktformular benutzen.

Die mit * markierten Eingabefelder müssen zwingend ausgefüllt werden.

Mit dem Absenden dieses Formulars erklärst du dich mit unseren Datenschutzbestimmungen einverstanden.