Fr. 198.00

Advances in Artificial Intelligence: Efficiency, Reliability, and Innovations in Machine Learning to Healthcare, and Blockchain

Englisch, Deutsch · Fester Einband

Erscheint am 13.02.2026

Beschreibung

Mehr lesen

Artificial intelligence is transforming the way we live, work, and heal. But true progress depends on more than raw power—it requires systems that are efficient, reliable, and trustworthy.
Advances in Artificial Intelligence: Efficiency, Reliability, and Innovations in Machine Learning, Healthcare, and Blockchain explores cutting-edge breakthroughs across machine learning, healthcare, and blockchain. From interpretable tensor models and life-changing medical applications to secure decentralized learning and safer large language models, this book highlights how innovation can meet responsibility.
Written by leading researchers, this book is an essential resource for anyone looking to understand and shape the next generation of AI.

Inhaltsverzeichnis

1. EM Algorithm for Tensor Network Logistic Regression based on Polya-Gamma Augmentation.- 2. Reproducibility Analysis for Results of Coupled Tensor Decompositions Based on Federated Learning.- 3. Image-based Skin Disease Classification Using Transfer Learning Model and Fusion Strategy.- 4. A High Precision Symptom Prediction and Diagnosis of Atrial Fibrillation Using CNN and LSTM with Multimodal Feature Fusion Technique.- 5. Personalised Profiling in Mental Health: A CAT-based Approach for Maternal Well-being and Mood Disorders.

Zusammenfassung

Artificial intelligence is transforming the way we live, work, and heal. But true progress depends on more than raw power—it requires systems that are efficient, reliable, and trustworthy.
Advances in Artificial Intelligence: Efficiency, Reliability, and Innovations in Machine Learning, Healthcare, and Blockchain explores cutting-edge breakthroughs across machine learning, healthcare, and blockchain. From interpretable tensor models and life-changing medical applications to secure decentralized learning and safer large language models, this book highlights how innovation can meet responsibility.
Written by leading researchers, this book is an essential resource for anyone looking to understand and shape the next generation of AI.

Produktdetails

Mitarbeit Peilun Dai (Herausgeber), Rosa Qi Yue So et al (Herausgeber), Haotong Qing (Herausgeber), Kentaroh Toyoda (Herausgeber), Andong Wang (Herausgeber), Takaharu Yaguchi (Herausgeber), Rosa Qi Yue So (Herausgeber), Jingfeng Zhang (Herausgeber), Xingyu Zheng (Herausgeber), Joey Zhou (Herausgeber)
Verlag Springer International Publishing
 
Sprache Englisch, Deutsch
Produktform Fester Einband
Erscheint 13.02.2026
 
EAN 9783032123619
ISBN 978-3-032-12361-9
Seiten 135
Illustration XV, 135 p. 20 illus., schwarz-weiss Illustrationen
Serie Adaptation, Learning, and Optimization
Themen Naturwissenschaften, Medizin, Informatik, Technik > Technik > Allgemeines, Lexika

machine learning, Datenbanken, Artificial Intelligence, Healthcare, Blockchain, Data Engineering, Computational Intelligence, Large Language Model, foundation models, Reliable Machine Learning

Kundenrezensionen

Zu diesem Artikel wurden noch keine Rezensionen verfasst. Schreibe die erste Bewertung und sei anderen Benutzern bei der Kaufentscheidung behilflich.

Schreibe eine Rezension

Top oder Flop? Schreibe deine eigene Rezension.

Für Mitteilungen an CeDe.ch kannst du das Kontaktformular benutzen.

Die mit * markierten Eingabefelder müssen zwingend ausgefüllt werden.

Mit dem Absenden dieses Formulars erklärst du dich mit unseren Datenschutzbestimmungen einverstanden.