Fr. 168.00

Kernel Methods for Omics Data Mining - Theory and Applications

Englisch · Fester Einband

Erscheint am 05.12.2025

Beschreibung

Mehr lesen

This book provides a new perspective on omics data modelling and analysis in bioinformatics area. Taking into consideration on the high-dimensionality and nonlinearity properties in omics data, the book detangles nonlinearity of data through novel perspectives of matrix optimization. Through integration of machine learning frameworks, various novel techniques are proposed to deal with the complexity of omics data analysis. Intuitive examples and illustrations are provided to help readers for understanding the key idea and general procedures in omics data analysis. This book is intended for academic scholars and practitioners who are interested in learning, computational biology, optimization and related fields. The graduate students in the above field can also benefit from this book.

Inhaltsverzeichnis

Omics Data: Acquisition and Mining.- Omics Data: Acquisition and Mining.-  Kernels and Spectrum Perturbations .-  Hadamard Kernel SVM with Applications.-  Regularized Multiple Kernel Learning Framework.-  Correlation Kernels for SVM Classification.- Weighted GTS Kernel and Applications in Drug Side-effect Profiles Prediction.- Single Cell RNA-sequencing Data Analysis.- Kernel Non-negative Matrix Factorization Framework for Single Cell Clustering.- Deep Neural Network with Kernel Nonnegative Matrix
Factorization for Single Cell Clustering.-  Multi-omics Single-cell Data Integration via High-order Kernel
Spectral Clustering.

Kundenrezensionen

Zu diesem Artikel wurden noch keine Rezensionen verfasst. Schreibe die erste Bewertung und sei anderen Benutzern bei der Kaufentscheidung behilflich.

Schreibe eine Rezension

Top oder Flop? Schreibe deine eigene Rezension.

Für Mitteilungen an CeDe.ch kannst du das Kontaktformular benutzen.

Die mit * markierten Eingabefelder müssen zwingend ausgefüllt werden.

Mit dem Absenden dieses Formulars erklärst du dich mit unseren Datenschutzbestimmungen einverstanden.