Fr. 206.00

Generation of Highly Controllable Ytterbium Atom Array - A Hybrid System of Nuclear Spin and Optical Clock Qubits Towards Quantum Error Correction

Englisch · Fester Einband

Erscheint am 10.11.2025

Beschreibung

Mehr lesen

This book offers a comprehensive exploration of a novel hybrid quantum computing platform based on dual-isotope ytterbium atom arrays. It presents pioneering work toward fault-tolerant quantum computation using nuclear spin and optical clock qubits in a neutral-atom system. The central challenge addressed in this book is the implementation of quantum error correction (QEC) in neutral-atom architectures, particularly the need for mid-circuit measurements reading out ancilla qubits without disturbing data qubits. To overcome this, the author develops a hybrid array composed of fermionic 171Yb (serving as nuclear spin data qubits) and bosonic 174Yb (serving as optical clock ancilla qubits). This innovative combination enables non-destructive state readout and low crosstalk between qubits, laying critical groundwork for QEC protocols. This book demonstrates efficient state initialization and coherent control of both types of qubits in large-scale tweezer arrays. Through precise manipulation and rearrangement techniques, a defect-free, dual-isotope array is constructed with high single-site fidelity and minimal dual occupancy. Crosstalk analysis reveals that 174Yb imaging light does not degrade the coherence of adjacent 171Yb nuclear spin qubits an essential result for practical QEC. In parallel, the work reports the development of a high-power, narrow-linewidth ultraviolet laser at 325 nm to achieve coherent Rydberg excitation of ytterbium atoms. The laser system, which includes a Raman fiber amplifier and high-finesse cavity for noise suppression, enables MHz-order Rabi oscillations between metastable and Rydberg states. This achievement provides a path toward implementing high-fidelity two-qubit gates, a cornerstone of universal quantum computation. This book combines theoretical insights, advanced laser engineering, and precision atomic control to establish a scalable, neutral-atom-based quantum computing architecture. Its interdisciplinary approach makes it a valuable resource not only for physicists working in quantum optics and atomic physics but also for engineers and computer scientists interested in next-generation quantum technologies.

Inhaltsverzeichnis

Introduction.- Atom-light Interaction.- Ytterbium Atoms and Rydberg States.- Experimental Apparatus and Techniques.- Coherent Manipulations of Nuclear Spin And Optical Clock Qubits in Ytterbium Atoms.- Hybrid Atom Tweezer Array of Nuclear Spin and Optical Clock Qubits.- Development of a High-power Ultraviolet Laser System and Observation of Fast Coherent Rydberg Excitation of Ytterbium.- Conclusion and Outlook.

Über den Autor / die Autorin

Yuma Nakamura received his Ph.D. in Science from Kyoto University, Japan. In 2022, he was awarded a research fellowship by the Japan Society for the Promotion of Science. He currently serves as the Chief Technology Officer at Yaqumo Inc., a startup company. His research focuses on the coherent control of qubits encoded in neutral atoms and the development of a fault-tolerant quantum computer based on neutral atoms.

Zusammenfassung

This book offers a comprehensive exploration of a novel hybrid quantum computing platform based on dual-isotope ytterbium atom arrays. It presents pioneering work toward fault-tolerant quantum computation using nuclear spin and optical clock qubits in a neutral-atom system. The central challenge addressed in this book is the implementation of quantum error correction (QEC) in neutral-atom architectures, particularly the need for mid-circuit measurements—reading out ancilla qubits without disturbing data qubits. To overcome this, the author develops a hybrid array composed of fermionic 171Yb (serving as nuclear spin data qubits) and bosonic 174Yb (serving as optical clock ancilla qubits). This innovative combination enables non-destructive state readout and low crosstalk between qubits, laying critical groundwork for QEC protocols. This book demonstrates efficient state initialization and coherent control of both types of qubits in large-scale tweezer arrays. Through precise manipulation and rearrangement techniques, a defect-free, dual-isotope array is constructed with high single-site fidelity and minimal dual occupancy. Crosstalk analysis reveals that 174Yb imaging light does not degrade the coherence of adjacent 171Yb nuclear spin qubits—an essential result for practical QEC. In parallel, the work reports the development of a high-power, narrow-linewidth ultraviolet laser at 325 nm to achieve coherent Rydberg excitation of ytterbium atoms. The laser system, which includes a Raman fiber amplifier and high-finesse cavity for noise suppression, enables MHz-order Rabi oscillations between metastable and Rydberg states. This achievement provides a path toward implementing high-fidelity two-qubit gates, a cornerstone of universal quantum computation. This book combines theoretical insights, advanced laser engineering, and precision atomic control to establish a scalable, neutral-atom-based quantum computing architecture. Its interdisciplinary approach makes it a valuable resource not only for physicists working in quantum optics and atomic physics but also for engineers and computer scientists interested in next-generation quantum technologies.

Produktdetails

Autoren Yuma Nakamura
Mitarbeit Yoshiro Takahashi (Vorwort)
Verlag Springer, Berlin
 
Sprache Englisch
Produktform Fester Einband
Erscheint 10.11.2025, verspätet
 
EAN 9789819528356
ISBN 978-981-9528-35-6
Seiten 150
Illustration XVIII, 150 p. 55 illus., 54 illus. in color.
Serie Springer Theses
Themen Naturwissenschaften, Medizin, Informatik, Technik > Physik, Astronomie > Theoretische Physik

Kernphysik, Atom- und Molekularphysik, Optische Physik, Theoretische Informatik, Quantum Computing, Quantum Optics, Atomic and Molecular Structure and Properties, Atoms and molecules in external fields, Quantum Measurement and Metrology, Rydberg States, Cold Atoms, Optical Tweezer Array, Ytterbium

Kundenrezensionen

Zu diesem Artikel wurden noch keine Rezensionen verfasst. Schreibe die erste Bewertung und sei anderen Benutzern bei der Kaufentscheidung behilflich.

Schreibe eine Rezension

Top oder Flop? Schreibe deine eigene Rezension.

Für Mitteilungen an CeDe.ch kannst du das Kontaktformular benutzen.

Die mit * markierten Eingabefelder müssen zwingend ausgefüllt werden.

Mit dem Absenden dieses Formulars erklärst du dich mit unseren Datenschutzbestimmungen einverstanden.