Fr. 70.00

Computational Mathematics Modeling in Cancer Analysis - 4th International Workshop, CMMCA 2025, Held in Conjunction with MICCAI 2025, Daejeon, South Korea, September 27, 2025, Proceedings

Englisch · Taschenbuch

Versand in der Regel in 6 bis 7 Wochen

Beschreibung

Mehr lesen

This book constitutes the refereed proceedings of the 4th International Workshop on Computational Mathematics Modeling in Cancer Analysis, CMMCA 2025, held in Daejeon, South Korea, during September 27, 2025, in conjunction with MICCAI 2025.
The 17 full papers presented in this book were carefully reviewed and selected from 24 submissions. These papers focus on algorithmic and mathematical innovations that advance cancer imaging and analysis across spatial, temporal, and biological scales.

Inhaltsverzeichnis

.- A Lightweight Optimization Framework for Estimating 3D Brain Tumor Infiltration.
.- A Data-Driven Approach to Optimise Parameters of a Computational Digital Twin Model in Response to SBRT on MR-Linac.
.- FMIC-AI: Annotation-Free Tumor Cell Detection in Fluorescence Microscopy via Self-Supervised Anomaly Detection.
.- Score-based Diffusion Model for Unpaired Virtual Histology Staining.
.- Redefining Spectral Unmixing for In-Vivo BrainTissue Analysis from Hyperspectral Imaging.
.- CT Image Segmentation Using Frequency Domain Feature-Assisted Selective Long Memory State Space Model.
.- Towards Robust Skin Lesion Classification: Lesion Segmentation, Mole Collision Simulation and Hierarchical learning.
.- Key Clinical Parameters Detection and Ovarian Tumor Benign/Malignant Classification in Multi-Modal Ultrasound Images via a Multi-Task Model.
.- OG-SAM: Enhancing Multi-Organ Segmentation with Organogenesis-Based Adaptive Modeling.
.- CoMoSeg: Anatomical Consistency and Cross Modality Guidance for Robust Brain Tumor Segmentation Using Partially Labeled MR Sequences.
.- Region-aware Diagnosis of Clinically Significant Prostate Cancer via Semi-supervised Learning Segmentation.
.- GraphMMP: A Graph Neural Network Model with Mutual Information and Global Fusion for Multimodal Medical Prognosis.
.- Dual-Guided 3D Liver CT Image Generation for Medical Analysis.
.- HaDM-ST: Histology-Assisted Differential Modeling for Spatial Transcriptomics Generation.
.- Projection-Driven Robust Motion Compensation for CBCT Using a Patient-Specific Model Learned from Prior Scans.
.- Revealing New Possibilities for Breast MRI Enhancement: Mamba-Driven Cross-Attention GAN with VMKANet.
.- Hierarchical Brain Structure Modeling for Predicting Genotype of Glioma.

Zusammenfassung

This book constitutes the refereed proceedings of the 4th International Workshop on Computational Mathematics Modeling in Cancer Analysis, CMMCA 2025, held in Daejeon, South Korea, during September 27, 2025, in conjunction with MICCAI 2025.
The 17 full papers presented in this book were carefully reviewed and selected from 24 submissions. These papers focus on algorithmic and mathematical innovations that advance cancer imaging and analysis across spatial, temporal, and biological scales.

Produktdetails

Mitarbeit Chao Li (Herausgeber), Wenjian Qin (Herausgeber), Jia Wu (Herausgeber), Jia Wu et al (Herausgeber), Nazar Zaki (Herausgeber)
Verlag Springer, Berlin
 
Sprache Englisch
Produktform Taschenbuch
Erschienen 28.10.2025
 
EAN 9783032066237
ISBN 978-3-0-3206623-7
Seiten 172
Abmessung 155 mm x 10 mm x 235 mm
Gewicht 289 g
Illustration XI, 172 p. 63 illus., 51 illus. in color.
Serie Lecture Notes in Computer Science
Themen Naturwissenschaften, Medizin, Informatik, Technik > Informatik, EDV > Anwendungs-Software

Onkologie, DV-gestützte Biologie/Bioinformatik, Computer Imaging, Vision, Pattern Recognition and Graphics, Computational and Systems Biology, Mathematical and Computational Biology, Computing methodologies, Medical Imaging Analysis, Cancer Models, Tumor microenvironment heterogeneity, Multi-modality fusion, Computer-aided tumor diagnosis, Mathematics modeling, Spatiotemporal modeling, Computer-aided tumor detection

Kundenrezensionen

Zu diesem Artikel wurden noch keine Rezensionen verfasst. Schreibe die erste Bewertung und sei anderen Benutzern bei der Kaufentscheidung behilflich.

Schreibe eine Rezension

Top oder Flop? Schreibe deine eigene Rezension.

Für Mitteilungen an CeDe.ch kannst du das Kontaktformular benutzen.

Die mit * markierten Eingabefelder müssen zwingend ausgefüllt werden.

Mit dem Absenden dieses Formulars erklärst du dich mit unseren Datenschutzbestimmungen einverstanden.