Fr. 198.00

Spectral Information Dynamics in Network Neuroscience and Physiology

Englisch · Fester Einband

Erscheint am 11.11.2025

Beschreibung

Mehr lesen

This book introduces a unified framework that integrates various data-driven information dynamics approaches to quantify node-specific, pairwise, and high-order interactions within complex systems in the contexts of network neuroscience and network physiology. Using measures of information rate, a hierarchical organization of interactions is established to describe the dynamics of individual nodes, connections between pairs, and redundant or synergistic relationships among groups of nodes. Initially defined in the time domain, these measures are extended to the spectral domain, enabling frequency-specific analysis under the Gaussian assumption and linear parametric models. The framework is validated on simulated network systems and applied to real-world multivariate time series in neuroscience and physiology. The spectral high-order information measures successfully reveal respiratory-driven redundancy in cardiovascular, cardiorespiratory, and cerebrovascular systems, and uncover a predominance of redundancy in high-order brain interactions, alongside the emergence of synergistic circuits not captured by pairwise analysis. These results emphasize the importance of high-order, frequency-resolved information measures in characterizing complex network dynamics and provide new insights into the coordinated functioning of physiological and neural systems.

Inhaltsverzeichnis

Introduction.- Linear Modelling of Stochastic Interactions.- Static Networks of Random Variables.- Dynamic Networks of Random Processes.- Applications to Physiological Networks.- Applications to Brain Networks.

Zusammenfassung

This book introduces a unified framework that integrates various data-driven information dynamics approaches to quantify node-specific, pairwise, and high-order interactions within complex systems in the contexts of network neuroscience and network physiology. Using measures of information rate, a hierarchical organization of interactions is established to describe the dynamics of individual nodes, connections between pairs, and redundant or synergistic relationships among groups of nodes. Initially defined in the time domain, these measures are extended to the spectral domain, enabling frequency-specific analysis under the Gaussian assumption and linear parametric models. The framework is validated on simulated network systems and applied to real-world multivariate time series in neuroscience and physiology. The spectral high-order information measures successfully reveal respiratory-driven redundancy in cardiovascular, cardiorespiratory, and cerebrovascular systems, and uncover a predominance of redundancy in high-order brain interactions, alongside the emergence of synergistic circuits not captured by pairwise analysis. These results emphasize the importance of high-order, frequency-resolved information measures in characterizing complex network dynamics and provide new insights into the coordinated functioning of physiological and neural systems.

Kundenrezensionen

Zu diesem Artikel wurden noch keine Rezensionen verfasst. Schreibe die erste Bewertung und sei anderen Benutzern bei der Kaufentscheidung behilflich.

Schreibe eine Rezension

Top oder Flop? Schreibe deine eigene Rezension.

Für Mitteilungen an CeDe.ch kannst du das Kontaktformular benutzen.

Die mit * markierten Eingabefelder müssen zwingend ausgefüllt werden.

Mit dem Absenden dieses Formulars erklärst du dich mit unseren Datenschutzbestimmungen einverstanden.