Fr. 261.00

Rough Wall Turbulent Boundary Layers - Direct Numberical Simulation, Large Eddy Simulation and Experiment

Englisch, Deutsch · Fester Einband

Erscheint am 22.10.2025

Beschreibung

Mehr lesen

The book presents a comprehensive summary of experiments and high-fidelity simulations (using Direct Numerical Simulation [DNS] and Large Eddy Simulation [LES]) of rough wall pipe and channel flows, and turbulent boundary layers from subsonic to hypersonic speeds. Although the field of rough wall turbulent boundary layers and rough wall turbulent pipe flow has been studied for nearly 200 years, there is no comprehensive summary of the experiments and high-fidelity simulations (LES and DNS) incorporating example results for each investigation. Dr. Knight further provides background information on turbulent boundary layers and pipe flow, together with a brief introduction to Direct Numerical Simulation and Large Eddy Simulation. A summary chapter describes the knowledge of the roughness function, examines the validity of Townsend s similarity hypothesis and details the available data of experimental and high-fidelity simulation turbulence statistics and understanding of the rough wall turbulence structure, illustrating the importance of the phenomena in aerodynamics, aerospace, and civil, environmental, and mechanical engineering.

  • Shows the connection to aerodynamic drag on wings; efficiency of propellors, and pollutant dispersion in urban areas
  • Examines high fidelity simulations (LES and DNS) of rough wall turbulent boundary layers, pipe, and channel flows
  • Summarizes over 100 years of experimental results for rough wall turbulent boundary layers and rough wall pipe flow
     
 
 
 

Inhaltsverzeichnis

Introduction.- Mathematical theory.- Background.- Experiments.-Direct numerical simulation and large eddy
simulation.- Summary.

Über den Autor / die Autorin

Dr. Doyle Knight is a Distinguished Professor in the Department of Mechanical and Aerospace Engineering at Rutgers University, The State University of New Jersey

Zusammenfassung

The book presents a comprehensive summary of experiments and high-fidelity simulations (using Direct Numerical Simulation [DNS] and Large Eddy Simulation [LES]) of rough wall pipe and channel flows, and turbulent boundary layers from subsonic to hypersonic speeds. Although the field of rough wall turbulent boundary layers and rough wall turbulent pipe flow has been studied for nearly 200 years, there is no comprehensive summary of the experiments and high-fidelity simulations (LES and DNS) incorporating example results for each investigation. Dr. Knight further provides background information on turbulent boundary layers and pipe flow, together with a brief introduction to Direct Numerical Simulation and Large Eddy Simulation. A summary chapter describes the knowledge of the roughness function, examines the validity of Townsend’s similarity hypothesis and details the available data of experimental and high-fidelity simulation turbulence statistics and understanding of the rough wall turbulence structure, illustrating the importance of the phenomena in aerodynamics, aerospace, and civil, environmental, and mechanical engineering.

  • Shows the connection to aerodynamic drag on wings; efficiency of propellors, and pollutant dispersion in urban areas
  • Examines high fidelity simulations (LES and DNS) of rough wall turbulent boundary layers, pipe, and channel flows
  • Summarizes over 100 years of experimental results for rough wall turbulent boundary layers and rough wall pipe flow


 

 

 

 

 
 
 
 

Kundenrezensionen

Zu diesem Artikel wurden noch keine Rezensionen verfasst. Schreibe die erste Bewertung und sei anderen Benutzern bei der Kaufentscheidung behilflich.

Schreibe eine Rezension

Top oder Flop? Schreibe deine eigene Rezension.

Für Mitteilungen an CeDe.ch kannst du das Kontaktformular benutzen.

Die mit * markierten Eingabefelder müssen zwingend ausgefüllt werden.

Mit dem Absenden dieses Formulars erklärst du dich mit unseren Datenschutzbestimmungen einverstanden.