Fr. 113.00

Geometric Science of Information - 7th International Conference, GSI 2025, Saint-Malo, France, October 29-31, 2025, Proceedings, Part I

Englisch · Taschenbuch

Versand in der Regel in 6 bis 7 Wochen

Beschreibung

Mehr lesen

The 3-volume set LNCS 16033 - 16035 constitutes the proceedings of the 7th International Conference on Geometric Science of Information, GSI 2025, held in St. Malo, France, during October 2025. The main theme of GSI 2025 was: Geometric Structures of Statistical and Quantum Physics, Information Geometry, and Machine Learning: FROM CLASSICAL TO QUANTUM INFORMATION GEOMETRY.
The 124 full papers included in the proceedings were carefully reviewed and selected from 146 submissions. They were organized in topical sections as follows:
Part I: Geometric Learning and Differential Invariants on Homogeneous Spaces; Statistical Manifolds and Hessian information geometry; Applied Geometry-Informed Machine Learning; Geometric Green Learning on Groups and Quotient Spaces; Divergences in Statistics and Machine Learning;
Part II: Geometric Statistics; Computational Information Geometry and Divergences; Geometric Methods in Thermodynamics; Classical & Quantum Information, Geometry and Topology; Geometric Mechanics; Stochastic Geometric Dynamics;  
Part III: New trends in Nonholonomic Systems; Learning of Dynamic Processes; Optimization and learning on manifolds; Neurogeometry; Lie Group in Learning Distributions & in Filters; A geometric approach to differential equations; Information Geometry, Delzant Toric Manifold & Integrable System.

Zusammenfassung

The 3-volume set LNCS 16033 - 16035 constitutes the proceedings of the 7th International Conference on Geometric Science of Information, GSI 2025, held in St. Malo, France, during October 2025. The main theme of GSI 2025 was: Geometric Structures of Statistical and Quantum Physics, Information Geometry, and Machine Learning: FROM CLASSICAL TO QUANTUM INFORMATION GEOMETRY.
The 124 full papers included in the proceedings were carefully reviewed and selected from 146 submissions. They were organized in topical sections as follows:
Part I: Geometric Learning and Differential Invariants on Homogeneous Spaces; Statistical Manifolds and Hessian information geometry; Applied Geometry-Informed Machine Learning; Geometric Green Learning on Groups and Quotient Spaces; Divergences in Statistics and Machine Learning;
Part II: Geometric Statistics; Computational Information Geometry and Divergences; Geometric Methods in Thermodynamics; Classical & Quantum Information, Geometry and Topology; Geometric Mechanics; Stochastic Geometric Dynamics;  
Part III: New trends in Nonholonomic Systems; Learning of Dynamic Processes; Optimization and learning on manifolds; Neurogeometry; Lie Group in Learning Distributions & in Filters; A geometric approach to differential equations; Information Geometry, Delzant Toric Manifold & Integrable System.

Produktdetails

Mitarbeit Barbaresco (Herausgeber), Frédéric Barbaresco (Herausgeber), Frank Nielsen (Herausgeber)
Verlag Springer, Berlin
 
Sprache Englisch
Produktform Taschenbuch
Erschienen 11.10.2025
 
EAN 9783032039170
ISBN 978-3-0-3203917-0
Seiten 382
Abmessung 155 mm x 23 mm x 235 mm
Gewicht 645 g
Illustration XLIII, 382 p. 58 illus., 48 illus. in color.
Serie Lecture Notes in Computer Science
Themen Naturwissenschaften, Medizin, Informatik, Technik > Informatik, EDV > Informatik

Künstliche Intelligenz, Computerhardware, machine learning, Artificial Intelligence, Deep Learning, Maschinelles Sehen, Bildverstehen, Computer Vision, Thermodynamics, Mathematics of Computing, Information theory, Computer Engineering and Networks, Quantum theory, Riemannian geometry, lie group, Optimal transport, Information geometry, Shape space, Geometric mechanics

Kundenrezensionen

Zu diesem Artikel wurden noch keine Rezensionen verfasst. Schreibe die erste Bewertung und sei anderen Benutzern bei der Kaufentscheidung behilflich.

Schreibe eine Rezension

Top oder Flop? Schreibe deine eigene Rezension.

Für Mitteilungen an CeDe.ch kannst du das Kontaktformular benutzen.

Die mit * markierten Eingabefelder müssen zwingend ausgefüllt werden.

Mit dem Absenden dieses Formulars erklärst du dich mit unseren Datenschutzbestimmungen einverstanden.