Fr. 103.00

Medical Image Understanding and Analysis - 29th Annual Conference, MIUA 2025, Leeds, UK, July 15-17, 2025, Proceedings, Part II

Englisch · Taschenbuch

Versand in der Regel in 6 bis 7 Wochen

Beschreibung

Mehr lesen

The three-volume set LNCS 15916,15917 & 15918 constitutes the refereed proceedings of the 29th Annual Conference on Medical Image Understanding and Analysis, MIUA 2025, held in Leeds, UK, during July 15 17, 2025.
The 67 revised full papers presented in these proceedings were carefully reviewed and selected from 99 submissions. The papers are organized in the following topical sections:
Part I: Frontiers in Computational Pathology; and Image Synthesis and Generative Artificial Intelligence.
Part II: Image-guided Diagnosis; and Image-guided Intervention.
Part III: Medical Image Segmentation; and Retinal and Vascular Image Analysis.

Inhaltsverzeichnis

.- Image-guided Diagnosis.
.- FD-SSD: Semi-Supervised Detection of Bone Fenestration and Dehiscence in Intraoral Images.
.- Interpretable Prediction of Lymph Node Metastasis in Rectal Cancer MRI Using Variational Autoencoders.
.- Self-Guided SwinTransformer Improves Breast Cancer Detection Through Iterative Attention-Based Zooming.
.- Can AI Be Faster, Accurate, and Explainable? SpikeNet Makes It Happen.
.- A Novel Feature-Prioritized Loss Function for Enhanced Pneumonia Segmentation in Chest X-rays.
.- Bridging Accuracy and Explainability: A SHAP-Enhanced CNN for Skin Cancer Diagnosis.
.- Multi-Scale WSI Analysis: A Cascade Framework for Efficient Breast Cancer Metastasis Detection.
.- Learning to Harmonize Cross-vendor X-ray Images by Non-linear Image Dynamics Correction.
.- Modified CBAM: Sub-Block Pooling for Improved Channel and Spatial Attention.
.- WSI-AL: A Novel Active Learning Framework for Whole Slide Image Selection.
.- A Deep-learning Approach for Diagnosing and Grading Ankylosing Spondylitis Sacroiliitis by X-ray Images.
.- Towards Breast Tumor Aggressiveness Classification in Digital Mammograms Using Boundary-Aware Segmentation and Feature Analysis.
.- Image-guided Intervention.
.- Joint Dento-Facial Shape Model.
.- Out-of-Distribution Detection in Gastrointestinal Vision by Estimating Nearest Centroid Distance Deficit.
.- Deep Learning-Driven Pipeline for Automated Wound Measurement of Chronic Wounds.
.- Midline-constrained Loss in the Anatomical Landmark Segmentation of 3D Liver Models.
.- DepthClassNet: A Multitask Framework for Monocular Depth Estimation and Texture Classification in Endoscopic Imaging.
.- Assessing the Generalization Performance of SAM for Ureteroscopy Scene Segmentation and Understanding.
.- Modelling Uncertainty in Graph Convolutional Networks for Edge Detection in Mammograms.
.- Classification of Gastroscopy Images Under extreme Class Imbalance: A Deep Learning Pipeline.
.- Temporally Consistent Smoke Removal from Endoscopic Video Images.
.- Toward Patient-specific Partial Point Cloud to Surface Completion for Pre- to Intra-operative Registration in Image-guided Liver Interventions.
.- EfficientDet with Knowledge Distillation and Instance Whitening for Real-time and Generalisable Polyp Detection.

Zusammenfassung

The three-volume set LNCS 15916,15917 & 15918 constitutes the refereed proceedings of the 29th Annual Conference on Medical Image Understanding and Analysis, MIUA 2025, held in Leeds, UK, during July 15–17, 2025.
The 67 revised full papers presented in these proceedings were carefully reviewed and selected from 99 submissions. The papers are organized in the following topical sections:
Part I: Frontiers in Computational Pathology; and Image Synthesis and Generative Artificial Intelligence.
Part II: Image-guided Diagnosis; and Image-guided Intervention.
Part III: Medical Image Segmentation; and Retinal and Vascular Image Analysis.

Produktdetails

Mitarbeit Sharib Ali (Herausgeber), David C Hogg (Herausgeber), David Hogg (Herausgeber), David C. Hogg (Herausgeber), Michelle Peckham (Herausgeber)
Verlag Springer, Berlin
 
Originaltitel Medical Image Understanding and Analysis
Sprache Englisch
Produktform Taschenbuch
Erschienen 15.08.2025
 
EAN 9783031986901
ISBN 978-3-0-3198690-1
Seiten 332
Abmessung 155 mm x 19 mm x 235 mm
Gewicht 529 g
Illustration XIII, 332 p. 124 illus., 112 illus. in color.
Serie Lecture Notes in Computer Science
Themen Naturwissenschaften, Medizin, Informatik, Technik > Informatik, EDV > Anwendungs-Software

Künstliche Intelligenz, machine learning, brain imaging, Artificial Intelligence, Deep Learning, angewandte informatik, Informationstechnik (IT), allgemeine Themen, Computer Vision, Dermatology, Computer and Information Systems Applications, Cardiac Imaging, Image processing, Computing Milieux, medical image analysis, Digital pathology, AI in medical imaging, computational models, AI generalisation, Domain adaptation for medical imaging, Microscopic Imaging

Kundenrezensionen

Zu diesem Artikel wurden noch keine Rezensionen verfasst. Schreibe die erste Bewertung und sei anderen Benutzern bei der Kaufentscheidung behilflich.

Schreibe eine Rezension

Top oder Flop? Schreibe deine eigene Rezension.

Für Mitteilungen an CeDe.ch kannst du das Kontaktformular benutzen.

Die mit * markierten Eingabefelder müssen zwingend ausgefüllt werden.

Mit dem Absenden dieses Formulars erklärst du dich mit unseren Datenschutzbestimmungen einverstanden.