Fr. 215.00

Federated Learning in Health Care Technology

Englisch · Fester Einband

Versand in der Regel in 6 bis 7 Wochen

Beschreibung

Mehr lesen

This book offers an in-depth exploration of federated learning (FL), a groundbreaking approach that facilitates collaborative data analysis while ensuring patient privacy and data security. As healthcare systems worldwide generate vast amounts of data, the challenge lies in harnessing this information without compromising confidentiality. Federated learning addresses this by allowing multiple institutions to collaborate on machine learning models without sharing sensitive data. In this context, the authors delve into the foundational principles of FL, illustrating how it enables the aggregation of decentralized data to improve diagnostic accuracy, develop personalized treatment plans, and enhance overall healthcare outcomes. The authors present real-world applications across various medical fields, from predictive analytics in chronic disease management to precision medicine and beyond. Additionally, the authors discuss the ethical and regulatory landscapes, providing insights into the challenges and solutions associated with implementing FL in healthcare. This book is designed for a diverse audience, including researchers, healthcare practitioners, data scientists, and policymakers. It aims to bridge the gap between cutting-edge technology and practical medical applications, offering a comprehensive guide to leveraging FL for healthcare innovation.

Inhaltsverzeichnis

Federated Learning in Health Care Technology Challenges, Solutions and Opportunities. Decentralized Tumor Classification with Federated Learning A Privacy-Preserving Approach.- Transforming Healthcare Analytics.- Privacy-Preserving Kidney Stone Detection from X-ray Image using Federated Learning. Federated Learning for Privacy-Preserving Healthcare Analytics: A Novel Framework for Fraud Detection in Healthcare.

Produktdetails

Mitarbeit Dey (Herausgeber), Nilanjan Dey (Herausgeber), Muhammad Firoz Mridha (Herausgeber), Muhammad Firoz Mridha (Herausgeber)
Verlag Springer, Berlin
 
Sprache Englisch
Produktform Fester Einband
Erschienen 30.08.2026
 
EAN 9789819683529
ISBN 978-981-9683-52-9
Seiten 234
Illustration X, 234 p. 43 illus., 42 illus. in color.
Serie Studies in Computational Intelligence
Themen Naturwissenschaften, Medizin, Informatik, Technik > Technik > Allgemeines, Lexika

machine learning, Maschinelles Lernen, Deep Learning, Maschinelles Sehen, Bildverstehen, Computer Vision, Computational Intelligence, Federated Learning, Privacy Preserving, Disease Classification, Disease Identification

Kundenrezensionen

Zu diesem Artikel wurden noch keine Rezensionen verfasst. Schreibe die erste Bewertung und sei anderen Benutzern bei der Kaufentscheidung behilflich.

Schreibe eine Rezension

Top oder Flop? Schreibe deine eigene Rezension.

Für Mitteilungen an CeDe.ch kannst du das Kontaktformular benutzen.

Die mit * markierten Eingabefelder müssen zwingend ausgefüllt werden.

Mit dem Absenden dieses Formulars erklärst du dich mit unseren Datenschutzbestimmungen einverstanden.