Fr. 179.00

Tiny Machine Learning: Design Principles and Applications

Englisch · Fester Einband

Erscheint am 12.11.2025

Beschreibung

Mehr lesen










An expert compilation of on-device training techniques, regulatory frameworks, and ethical considerations of TinyML design and development In Tiny Machine Learning: Design Principles and Applications, a team of distinguished researchers delivers a comprehensive discussion of the critical concepts, design principles, applications, and relevant issues in Tiny Machine Learning (TinyML). Expert contributors introduce a new low power resource, offering vast applications in IoT devices with system-algorithm co-design. Tiny Machine Learning explores TinyML paradigms and enablers, TinyML for anomaly detection, and the learning panorama under TinyML. Readers will find explanations of TinyML devices and tools, power consumption and memory in IoT microcontrollers, and lightweight frameworks for TinyML. The book also describes TinyML techniques for real-time and environmental applications. Additional topics covered in the book include:

  • A thorough introduction to security and privacy techniques for TinyML devices, including the implementation of novel security schemes
  • Incisive explorations of power consumption and memory in IoT MCUs, including ultralow-power smart IoT devices with embedded TinyML
  • Practical discussions of TinyML research targeting microcontrollers for data extraction and synthesis
Perfect for industry and academic researchers, scientists, and engineers, Tiny Machine Learning will also benefit lecturers and graduate students interested in machine learning.

Inhaltsverzeichnis










Chapter 1  Introduction to TinyML
Francisca Onyiyechi Nwokoma, Chidi Ukamaka Betrand, Juliet Nnenna Odii, Euphemia Chioma Nwokorie, and Euphemia Chioma Nwokorie
Chapter 2  Learning Panorama Under TinyML
Ikechukwu Ignatius Ayogu, Euphemia Chioma Nwokorie, Juliet Nnenna Odii, Francisca Onyiyechi Nwokoma, and Chidi Ukamaka Betrand
Chapter 3 TinyML for Anomaly Detection
Richard Govada Joshua, Peter Anuoluwapo Gbadega, Agbotiname Lucky Imoize, and Samuel Oluwatobi Tofade
Chapter 4 TinyML Power Consumption and Memory in IoT MCUs
Peter Anuoluwapo Gbadega, Agbotiname Lucky Imoize, Richard Govada Joshua, and Samuel Oluwatobi Tofade
Chapter 5 Efficient Data Cleaning and Anomaly Detection in IoT Devices Using TinyCleanEDF
Ilker Kara
Chapter 6 TinyML devices and tools
Abeeb Akorede Bello, Agbotiname Lucky Imoize, and Agbotiname Lucky Imoize
Chapter 7 Privacy-Preserving Techniques in TinyML for IoT
Oleksandr Kuznetsov, Emanuele Frontoni, Kateryna Kuznetsova, Marco Arnesano, and Pavlo Usik
Chapter 8 Enhancing Cybersecurity in TinyML with Lightweight Cryptographic Algorithms
Oleksandr Kuznetsov, Roman Minailenko, and Aigul Shaikhanova
Chapter 9 Tiny Machine Learning for Enhanced Edge Intelligence
Emmanuel Alozie, Agbotiname Lucky Imoize, Hawau I. Olagunju, Nasir Faruk, Salisu Garba, and Ayobami P. Olatunji


Über den Autor / die Autorin










Agbotiname Imoize is a Lecturer in the Department of Electrical and Electronics Engineering at the University of Lagos, Nigeria. He is a Fulbright Fellow, the Vice Chair of the IEEE Communication Society Nigeria chapter, and a Senior Member of IEEE. Dinh-Thuan Do, PhD, is an Assistant Professor with the School of Engineering at the University of Mount Union, USA. He is an editor of IEEE Transactions on Vehicular Technology and Computer Communications. He is a Senior Member of IEEE. Houbing Herbert Song, PhD, IEEE Fellow, is a Professor in the Department of Information Systems, and the Department of Computer Science and Electrical Engineering and Director of the Security and Optimization for Networked Globe Laboratory (SONG Lab) at the University of Maryland, Baltimore County. He is also Co-Editor-in-Chief of IEEE Transactions on Industrial Informatics.

Kundenrezensionen

Zu diesem Artikel wurden noch keine Rezensionen verfasst. Schreibe die erste Bewertung und sei anderen Benutzern bei der Kaufentscheidung behilflich.

Schreibe eine Rezension

Top oder Flop? Schreibe deine eigene Rezension.

Für Mitteilungen an CeDe.ch kannst du das Kontaktformular benutzen.

Die mit * markierten Eingabefelder müssen zwingend ausgefüllt werden.

Mit dem Absenden dieses Formulars erklärst du dich mit unseren Datenschutzbestimmungen einverstanden.