Fr. 199.00

Oscillatory Stability of Converter-Dominated Power Systems

Englisch · Taschenbuch

Versand in der Regel in 6 bis 7 Wochen

Beschreibung

Mehr lesen

This book provides modeling, analysis, and control methods for wideband oscillations caused by control interactions in converter-dominated power systems. The modern power system comprises power electronic devices in various forms, including wind turbines, photovoltaics, flexible AC/DC transmission systems, battery energy storage systems, and distributed generations, among others. Unstable oscillation modes can cause equipment damage, sudden power reduction, noise in power transformers, and degradation of power quality. Wideband oscillation seriously threatens the stable and reliable operation of wind power systems.
 
The interaction mechanism becomes more complex due to system-wide factors such as network topology, grid strength, input resource intermittency, converter control parameters, and the output levels of renewable generators. This complexity presents a significant challenge in studying the intricate control interaction phenomena and deriving appropriate countermeasures.
 

The book is beneficial for industry professionals, engineers, and academic researchers working on power systems in general, and specifically on power electronic converters.

Inhaltsverzeichnis

PART I: Terms, Definitions, and Classifications of Power System Oscillatory Stability.- Chapter 1: Introduction to Power System Oscillatory Stability.- Chapter 2: Terms, Classifications, and Mechanisms of Wideband Oscillations.- PART II: Modeling and Analysis Methods with Real-World Use Cases.- Chapter 3: Modeling Methods.- Chapter 4: Analysis Methods.- Chapter 5: Application Case: Oscillatory Stability Analysis of Type-4 Wind Power System.- PART III: Control Methods with Real-world Implementations.- Chapter 6: Mitigation of Wideband Oscillation.- Chapter 7: Application Case: Mitigation of SSO in Type 3 Wind Power Systems.- Chapter 8: Application Case: Mitigation of HFR in MMC-HVDC System.

Über den Autor / die Autorin

Xiaorong Xie (Fellow, IEEE & IET) is a Professor and Director of the Flexible Transmission & Distribution Systems Research Institute at the Department of Electrical Engineering, Tsinghua University, China. He has been engaged in research on power system stability analysis and control, subsynchronous resonance/oscillation, grid integration of renewable energy, and flexible transmission and distribution systems for more than 25 years. His research is supported by China National Science Funds for Distinguished Young Scientists and National Key Research and Development Programs. He has published 4 monographs, and over 300 papers, more than 70 authorized invention patents, and won 1 National Science and Technology Progress Award and over 10 provincial-level/industry association awards. He is currently serving as Editor of several international journals, including the IEEE Transactions on Power Delivery. He is a member of the IEC TC8/SC8A JWG5 (Leader of the Subgroup of “Subsynchronous Control Interaction”), CIGRE WG C4/B4.52 and CIGRE WG C4.49.

Jan Shair (Member, IEEE) received his PhD in Electrical Engineering from Tsinghua University, Beijing, China in 2021. Currently, he is working as a Tsinghua-Shuimu Fellow at the Department of Electrical Engineering, Tsinghua University, China. His research interests include modeling, analysis, and control of subsynchronous resonance/oscillation in converter-dominated power systems. He has published his research work in more than 50 journal and conference papers. He is a member of the IEEE Task Force on IBR-SSO and a contributor to several other IEC and CIGRE working groups related to subsynchronous oscillation. Dr. Shair is also serving as Guest Associate Editor of a Special Issue on "Control Interactions in Power Electronic Converter Dominated Power Systems" in the International Journal of Electrical Power and Energy Systems. 

Zusammenfassung

This book provides modeling, analysis, and control methods for wideband oscillations caused by control interactions in converter-dominated power systems. The modern power system comprises power electronic devices in various forms, including wind turbines, photovoltaics, flexible AC/DC transmission systems, battery energy storage systems, and distributed generations, among others. Unstable oscillation modes can cause equipment damage, sudden power reduction, noise in power transformers, and degradation of power quality. Wideband oscillation seriously threatens the stable and reliable operation of wind power systems.
 
The interaction mechanism becomes more complex due to system-wide factors such as network topology, grid strength, input resource intermittency, converter control parameters, and the output levels of renewable generators. This complexity presents a significant challenge in studying the intricate control interaction phenomena and deriving appropriate countermeasures.
 

The book is beneficial for industry professionals, engineers, and academic researchers working on power systems in general, and specifically on power electronic converters.

Produktdetails

Autoren Jan Shair, Xiaorong Xie
Verlag Springer, Berlin
 
Sprache Englisch
Produktform Taschenbuch
Erschienen 05.03.2025
 
EAN 9783031533594
ISBN 978-3-0-3153359-4
Seiten 241
Abmessung 155 mm x 14 mm x 235 mm
Gewicht 400 g
Illustration XV, 241 p. 170 illus., 152 illus. in color.
Serie Power Systems
Themen Naturwissenschaften, Medizin, Informatik, Technik > Technik > Elektronik, Elektrotechnik, Nachrichtentechnik

Regelungstechnik, Energieerzeugung und -verteilung, Electrical Power Engineering, Control, Robotics, Automation, Power system stability, Power Stations, Analysis and Control, High-frequency Resonance, Subsynchronous Oscillation, Wideband Oscillation, Modeling and Analysis

Kundenrezensionen

Zu diesem Artikel wurden noch keine Rezensionen verfasst. Schreibe die erste Bewertung und sei anderen Benutzern bei der Kaufentscheidung behilflich.

Schreibe eine Rezension

Top oder Flop? Schreibe deine eigene Rezension.

Für Mitteilungen an CeDe.ch kannst du das Kontaktformular benutzen.

Die mit * markierten Eingabefelder müssen zwingend ausgefüllt werden.

Mit dem Absenden dieses Formulars erklärst du dich mit unseren Datenschutzbestimmungen einverstanden.