Fr. 63.00

Almost Global Solutions of Capillary-Gravity Water Waves Equations on the Circle

Englisch · Taschenbuch

Versand in der Regel in 1 bis 2 Wochen (Titel wird auf Bestellung gedruckt)

Beschreibung

Mehr lesen

The goal of this monograph is to prove that any solution of the Cauchy problem for the capillary-gravity water waves equations, in one space dimension, with periodic, even in space, small and smooth enough initial data, is almost globally defined in time on Sobolev spaces, provided the gravity-capillarity parameters are taken outside an exceptional subset of zero measure.
 In contrast to the many results known for these equations on the real line, with decaying Cauchy data, one cannot make use of dispersive properties of the linear flow. Instead, a normal forms-based procedure is used, eliminating those contributions to the Sobolev energy that are of lower degree of homogeneity in the solution. Since the water waves equations form a quasi-linear system, the usual normal forms approaches would face the well-known problem of losses of derivatives in the unbounded transformations. To overcome this, after a paralinearization of the capillary-gravity water waves equations,we perform several paradifferential reductions to obtain a diagonal system with constant coefficient symbols, up to smoothing remainders. Then we start with a normal form procedure where the small divisors are compensated by the previous paradifferential regularization. The reversible structure of the water waves equations, and the fact that we seek solutions even in space, guarantees a key cancellation which prevents the growth of the Sobolev norms of the solutions.

Inhaltsverzeichnis

Introduction.- MainResult. - Paradifferential Calculus. - Complex Formulation of the Equation and Diagonalization of the Matrix Symbol. - Reduction to a Constant Coefficients Operator and Proof of the Main Theorem. - The Dirichlet-Neumann Paradifferential Problem. - Dirichlet-Neumann Operator and the Good Unknown. - Proof of Some Auxiliary Results.

Produktdetails

Autoren Massimiliano Berti, Jean-Marc Delort
Verlag Springer, Berlin
 
Sprache Englisch
Produktform Taschenbuch
Erschienen 12.11.2018
 
EAN 9783319994857
ISBN 978-3-31-999485-7
Seiten 269
Abmessung 157 mm x 17 mm x 236 mm
Gewicht 429 g
Illustration X, 269 p. 3 illus.
Serie Lecture Notes of the Unione Matematica Italiana
Themen Naturwissenschaften, Medizin, Informatik, Technik > Mathematik > Analysis

Analysis, B, Dynamics, Mathematics and Statistics, Functional Analysis, Dynamical Systems and Ergodic Theory, Partial Differential Equations, Ergodic theory, Nonlinear science, Dynamical systems, Functional analysis & transforms, Fourier Analysis

Kundenrezensionen

Zu diesem Artikel wurden noch keine Rezensionen verfasst. Schreibe die erste Bewertung und sei anderen Benutzern bei der Kaufentscheidung behilflich.

Schreibe eine Rezension

Top oder Flop? Schreibe deine eigene Rezension.

Für Mitteilungen an CeDe.ch kannst du das Kontaktformular benutzen.

Die mit * markierten Eingabefelder müssen zwingend ausgefüllt werden.

Mit dem Absenden dieses Formulars erklärst du dich mit unseren Datenschutzbestimmungen einverstanden.