Fr. 69.00

Experimental Research in Evolutionary Computation - The New Experimentalism

Englisch · Fester Einband

Versand in der Regel in 2 bis 3 Wochen (Titel wird auf Bestellung gedruckt)

Beschreibung

Mehr lesen

Experimentation is necessary - a purely theoretical approach is not reasonable. The new experimentalism, a development in the modern philosophy of science, considers that an experiment can have a life of its own. It provides a statistical methodology to learn from experiments, where the experimenter should distinguish between statistical significance and scientific meaning.
This book introduces the new experimentalism in evolutionary computation, providing tools to understand algorithms and programs and their interaction with optimization problems. The book develops and applies statistical techniques to analyze and compare modern search heuristics such as evolutionary algorithms and particle swarm optimization. Treating optimization runs as experiments, the author offers methods for solving complex real-world problems that involve optimization via simulation, and he describes successful applications in engineering and industrial control projects.
The book bridges the gap between theory and experiment by providing a self-contained experimental methodology and many examples, so it is suitable for practitioners and researchers and also for lecturers and students. It summarizes results from the author's consulting to industry and his experience teaching university courses and conducting tutorials at international conferences. The book will be supported online with downloads and exercises.

Inhaltsverzeichnis

Basics.- Research in Evolutionary Computation.- The New Experimentalism.- Statistics for Computer Experiments.- Optimization Problems.- Designs for Computer Experiments.- Search Algorithms.- Results and Perspectives.- Comparison.- Understanding Performance.- Summary and Outlook.

Zusammenfassung

Experimentation is necessary - a purely theoretical approach is not reasonable. The new experimentalism, a development in the modern philosophy of science, considers that an experiment can have a life of its own. It provides a statistical methodology to learn from experiments, where the experimenter should distinguish between statistical significance and scientific meaning.
This book introduces the new experimentalism in evolutionary computation, providing tools to understand algorithms and programs and their interaction with optimization problems. The book develops and applies statistical techniques to analyze and compare modern search heuristics such as evolutionary algorithms and particle swarm optimization. Treating optimization runs as experiments, the author offers methods for solving complex real-world problems that involve optimization via simulation, and he describes successful applications in engineering and industrial control projects.
The book bridges the gap between theory and experiment by providing a self-contained experimental methodology and many examples, so it is suitable for practitioners and researchers and also for lecturers and students. It summarizes results from the author's consulting to industry and his experience teaching university courses and conducting tutorials at international conferences. The book will be supported online with downloads and exercises.

Produktdetails

Autoren Thomas Bartz-Beielstein
Verlag Springer, Berlin
 
Sprache Englisch
Produktform Fester Einband
Erschienen 01.01.2006
 
EAN 9783540320265
ISBN 978-3-540-32026-5
Seiten 214
Gewicht 455 g
Illustration w. 66 ill.
Serien Natural Computing
Natural Computing Series
Natural Computing Series
Thema Naturwissenschaften, Medizin, Informatik, Technik > Informatik, EDV > Informatik

Kundenrezensionen

Zu diesem Artikel wurden noch keine Rezensionen verfasst. Schreibe die erste Bewertung und sei anderen Benutzern bei der Kaufentscheidung behilflich.

Schreibe eine Rezension

Top oder Flop? Schreibe deine eigene Rezension.

Für Mitteilungen an CeDe.ch kannst du das Kontaktformular benutzen.

Die mit * markierten Eingabefelder müssen zwingend ausgefüllt werden.

Mit dem Absenden dieses Formulars erklärst du dich mit unseren Datenschutzbestimmungen einverstanden.