Fr. 135.00

Portfolio Optimization - Theory and Application

Englisch · Fester Einband

Erscheint am 30.04.2025

Beschreibung

Mehr lesen










This comprehensive guide to the world of financial data modeling and portfolio design is a must-read for anyone looking to understand and apply portfolio optimization in a practical context. It bridges the gap between mathematical formulations and the design of practical numerical algorithms. It explores a range of methods, from basic time series models to cutting-edge financial graph estimation approaches. The portfolio formulations span from Markowitz's original 1952 mean-variance portfolio to more advanced formulations, including downside risk portfolios, drawdown portfolios, risk parity portfolios, robust portfolios, bootstrapped portfolios, index tracking, pairs trading, and deep-learning portfolios. Enriched with a remarkable collection of numerical experiments and more than 200 figures, this is a valuable resource for researchers and finance industry practitioners. With slides, R and Python code examples, and exercise solutions available online, it serves as a textbook for portfolio optimization and financial data modeling courses, at advanced undergraduate and graduate level.

Inhaltsverzeichnis










Preface; 1. Introduction; I. Financial Data: 2. Financial data: stylized facts; 3. Financial data: IID modeling; 4. Financial data: time series modeling; 5. Financial data: graphs; II. Portfolio Optimization: 6. Portfolio basics; 7. Modern portfolio theory; 8. Portfolio backtesting; 9. High-order portfolios; 10. Portfolios with alternative risk measures; 11. Risk parity portfolios; 12. Graph-based portfolios; 13. Index tracking portfolios; 14. Robust portfolios; 15. Pairs trading portfolios; 16. Deep learning portfolios; Appendices: Appendix A. Convex optimization theory; Appendix B. Optimization algorithms.

Über den Autor / die Autorin

Daniel P. Palomar is a Professor at the Hong Kong University of Science and Technology. He is recognized as EURASIP Fellow, IEEE Fellow, and Fulbright Scholar, and recipient of numerous research awards. His current research focus is on convex optimization applications in signal processing, machine learning, and finance. He is the author of many research articles and books, including 'Convex Optimization in Signal Processing and Communications'.

Kundenrezensionen

Zu diesem Artikel wurden noch keine Rezensionen verfasst. Schreibe die erste Bewertung und sei anderen Benutzern bei der Kaufentscheidung behilflich.

Schreibe eine Rezension

Top oder Flop? Schreibe deine eigene Rezension.

Für Mitteilungen an CeDe.ch kannst du das Kontaktformular benutzen.

Die mit * markierten Eingabefelder müssen zwingend ausgefüllt werden.

Mit dem Absenden dieses Formulars erklärst du dich mit unseren Datenschutzbestimmungen einverstanden.